ترغب بنشر مسار تعليمي؟ اضغط هنا

Type Ibn Supernovae May not all Come from Massive Stars

224   0   0.0 ( 0 )
 نشر من قبل Griffin Hosseinzadeh
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Because core-collapse supernovae are the explosions of massive stars, which have relatively short lifetimes, they occur almost exclusively in galaxies with active star formation. On the other hand, the Type Ibn supernova PS1-12sk exploded in an environment much more typical of thermonuclear (Type Ia) supernovae: on the outskirts of the brightest elliptical galaxy in a galaxy cluster. The lack of any obvious star formation at that location presented a challenge to models of Type Ibn supernovae as the explosions of very massive Wolf-Rayet stars. Here we present a supplementary search for star formation at the site of PS1-12sk, now that the supernova has faded, via deep ultraviolet imaging of the host cluster with the Hubble Space Telescope. We do not detect any ultraviolet emission within 1 kpc of the supernova location, which allows us deepen the limit on star formation rate by an order of magnitude compared to the original study on this event. In light of this new limit, we discuss whether the progenitors of Type Ibn supernovae can be massive stars and what reasonable alternatives have been proposed.

قيم البحث

اقرأ أيضاً

189 - Ke-Jung Chen 2014
Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 Msun die as highly energetic pair-in stability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core collapse, to capture any dynamical instabilities that may be seeded by collapse and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell $sim$ 20 - 100 seconds after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh--Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.
We present ultraviolet, optical and near-infrared data of the Type Ibn supernovae (SNe) 2010al and 2011hw. SN 2010al reaches an absolute magnitude at peak of M(R) = -18.86 +- 0.21. Its early light curve shows similarities with normal SNe Ib, with a r ise to maximum slower than most SNe Ibn. The spectra are dominated by a blue continuum at early stages, with narrow P-Cygni He I lines indicating the presence of a slow-moving, He-rich circumstellar medium. At later epochs the spectra well match those of the prototypical SN Ibn 2006jc, although the broader lines suggest that a significant amount of He was still present in the stellar envelope at the time of the explosion. SN 2011hw is somewhat different. It was discovered after the first maximum, but the light curve shows a double-peak. The absolute magnitude at discovery is similar to that of the second peak (M(R) = -18.59 +- 0.25), and slightly fainter than the average of SNe Ibn. Though the spectra of SN 2011hw are similar to those of SN 2006jc, coronal lines and narrow Balmer lines are cleary detected. This indicates substantial interaction of the SN ejecta with He-rich, but not H-free, circumstellar material. The spectra of SN 2011hw suggest that it is a transitional SN Ibn/IIn event similar to SN 2005la. While for SN 2010al the spectro-photometric evolution favours a H-deprived Wolf-Rayet progenitor (of WN-type), we agree with the conclusion of Smith et al. (2012) that the precursor of SN 2011hw was likely in transition from a luminous blue variable to an early Wolf-Rayet (Ofpe/WN9) stage.
211 - R. Voss , G. Nelemans 2011
In the dense stellar environment of the globular clusters, compact binaries are produced dynamically. Therefore the fraction of type Ia supernovae that explode in globular clusters is expected to be higher than the fraction of mass residing in these. We have searched for globular clusters at the positions of observed type Ia supernovae. We used archival HST images and literature data, covering the positions either before the supernovae exploded, or long enough after that the supernovae have faded below the luminosities of globular clusters. We did not find evidence for globular clusters at any of the supernova positions. For 18 type Ia supernovae, the observations are sensitive enough that any globular cluster would have been detected, and for further 17 type Ia supernovae, the brighter globular clusters would have been detected. Correcting for incompleteness, we derive a 90% upper limit of 0.09 on the fraction of type Ia supernovae that explode in globular clusters for the full sample and 0.22 for the sample of supernovae in late-type galaxies. This allows us to limit enhancements per unit stellar mass for a coeval population eta_{co}<50 (100) with 90% (99%) confidence. We find that by observing the positions of a sample of less than 100 type Ia supernovae in the outer parts of early-type galaxies, it will be possible to probe the currently favoured range of eta_{co}~1-10.
With a booming number of Type Ia supernovae (SNe Ia) discovered within a few days of their explosions, a fraction of SNe Ia that show luminosity excess in the early phase (early-excess SNe Ia) have been confirmed. In this article, we report early-pha se observations of seven photometrically normal SNe Ia (six early detections and one deep non-detection limit) at the COSMOS field through a half-year transient survey as a part of the Hyper Suprime-Cam Subaru Strategic Program (HSC SSP). In particular, a blue light-curve excess was discovered for HSC17bmhk, a normal SN Ia with rise time longer than 18.8 days, during the first four days after the discovery. The blue early excess in optical wavelength can be explained not only by interactions with a non-degenerate companion or surrounding dense circumstellar matter but also radiation powered by radioactive decays of $^{56}$Ni at the surface of the SN ejecta. Given the growing evidence of the early-excess discoveries in normal SNe Ia that have longer rise times than the average and a similarity in the nature of the blue excess to a luminous SN Ia subclass, we infer that early excess discovered in HSC17bmhk and other normal SNe Ia are most likely attributed to radioactive $^{56}$Ni decay at the surface of the SN ejecta. In order to successfully identify normal SNe Ia with early excess similar to that of HSC17bmhk, early UV photometries or high-cadence blue-band surveys are necessary.
SN 2014C was an unprecedented supernova (SN) that displayed a metamorphosis from Type Ib to Type IIn over $sim$200 days. This transformation is consistent with a helium star having exploded in a cavity surrounded by a dense shell of the progenitors s tripped hydrogen envelope. For at least 5 years post-explosion, the ejecta continued to interact with an outer, extended component of circumstellar medium (CSM) that was ejected even before the dense shell. It is still unclear, however, what kind of progenitor could have undergone such a complicated mass-loss history before it produced this peculiar SN. In this paper, we report a new analysis of SN 2014Cs host star cluster based on data from the Hubble Space Telescope (HST). By carefully fitting its spectral energy distribution (SED), we derive a precise cluster age of 20.0$^{+3.5}_{-2.6}$ Myr, which corresponds to the progenitors lifetime assuming coevolution. Combined with binary stellar evolution models, we find that SN 2014Cs progenitor may have been an $sim$11-$M_odot$ star in a relatively wide binary system. The progenitors envelope was partially stripped by Case C or Case BC mass transfer via binary interaction, followed by a violent eruption that ejected the last hydrogen layer before terminal explosion. Thus, SN 2014C, in common with SNe 2006jc and 2015G, may be a third example that violent eruptions, with mass-loss rates matching luminous blue variable (LBV) giant eruptions, can also occur in much lower-mass massive stars if their envelopes are partially or completely stripped in interacting binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا