ترغب بنشر مسار تعليمي؟ اضغط هنا

Small-scale physical and chemical structure of diffuse and translucent molecular clouds along the line of sight to Sgr B2

87   0   0.0 ( 0 )
 نشر من قبل Vivien Thiel
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The diffuse and translucent molecular clouds traced in absorption along the line of sight to strong background sources have so far been investigated mainly in the spectral domain because of limited angular resolution or small sizes of the background sources. We aim to resolve and investigate the spatial structure of molecular clouds traced by several molecules detected in absorption along the line of sight to SgrB2(N). We have used spectral line data from the EMoCA survey performed with ALMA, taking advantage of the high sensitivity and angular resolution. We identify, on the basis of the spectral analysis of c-C3H2 across the field of view, 15 main velocity components along the line of sight to SgrB2(N) and several components in the envelope of SgrB2. The c-C3H2 column densities reveal two categories of clouds. Clouds in Category I (3 kpc arm, 4 kpc arm, and some GC clouds) have smaller c-C3H2 column densities, smaller linewidths, and smaller widths of their column density PDFs than clouds in Category II (Scutum arm, Sgr arm, and other GC clouds). To investigate the spatial structure we derive opacity maps for the following molecules: c-C3H2, H13CO+, 13CO, HNC, HN13C, HC15N, CS, C34S, 13CS, SiO, SO, and CH3OH. These maps reveal that most molecules trace relatively homogeneous structures that are more extended than the field of view defined by the background continuum emission (about 15, that is 0.08-0.6pc depending on the distance). SO and SiO show more complex structures with smaller clumps of size ~5-8. Our analysis suggests that the driving of the turbulence is mainly solenoidal in the investigated clouds. On the basis of HCO+, we conclude that most line-of-sight clouds towards SgrB2 are translucent, including all clouds where complex organic molecules were recently detected. We also conclude that CCH and CH are good probes of H2 in both diffuse and translucent clouds.

قيم البحث

اقرأ أيضاً

The 1-50 GHz GBT PRIMOS data contains ~50 molecular absorption lines observed in diffuse and translucent clouds located in the Galactic Center, Bar, and spiral arms in the line-of-sight to Sgr B2(N). We measure the column densities and estimate abund ances, relative to H2, of 11 molecules and additional isotopologues. We use absorption by optically thin transitions of c-C3H2 to estimate the N(H2), and argue that this method is preferable to more commonly used methods. We discuss the kinematic structure and abundance patterns of small molecules including the sulfur-bearing species CS, SO, CCS, H2CS, and HCS+; oxygen-bearing molecules OH, SiO, and H2CO; and simple hydrocarbon molecules c-C3H2, l-C3H, and l-C3H+. We discuss the implications of the observed chemistry for the structure of the gas and dust in the ISM. Highlighted results include the following. First, whereas gas in the disk has a molecular hydrogen fraction of 0.65, clouds on the outer edge of the Galactic Bar and in or near the Galactic Center have molecular fractions of 0.85 and >0.9, respectively. Second, we observe trends in isotope ratios with Galactocentric distance; while carbon and silicon show enhancement of the rare isotopes at low Galactocentric distances, sulfur exhibits no trend with Galactocentric distance; the ratio of c-C3H2/c-H13CCCH provides a good estimate of the 12C:13C ratio, whereas H2CO/H2^13CO exhibits fractionation. Third, we report the presence of l-C3H+ in diffuse clouds for the first time. Finally, we suggest that CS has an enhanced abundance within higher density clumps of material in the disk, and therefore may be diagnostic of cloud conditions. If this holds, the diffuse clouds in the Galactic disk contain multiple embedded hyperdensities in a clumpy structure, and the density profile is not a simple function of A_V.
The giant molecular cloud Sagittarius B2 (hereafter SgrB2) is the most massive region with ongoing high-mass star formation in the Galaxy. In the southern region of the 40-pc large envelope of SgrB2, we encounter the SgrB2(DS) region which hosts more than 60 high-mass protostellar cores distributed in an arc shape around an extended HII region. We use the Very Large Array in its CnB and D configurations, and in the frequency bands C (4--8 GHz) and X (8--12 GHz) to observe the whole SgrB2 complex. Continuum and radio recombination line maps are obtained. We detect radio continuum emission in SgrB2(DS) in a bubble-shaped structure. From 4 to 12 GHz, we derive a spectral index between -1.2 and -0.4, indicating the presence of non-thermal emission. We decompose the contribution from thermal and non-thermal emission, and find that the thermal component is clumpy and more concentrated, while the non-thermal component is more extended and diffuse. The radio recombination lines in the region are found to be not in local thermodynamic equilibrium (LTE) but stimulated by the non-thermal emission. The thermal free-free emission is likely tracing an HII region ionized by an O7 star, while the non-thermal emission can be generated by relativistic electrons created through first-order Fermi acceleration. We have developed a simple model of the SgrB2(DS) region and found that first-order Fermi acceleration can reproduce the observed flux density and spectral index.
We have used an unbiased, spectral line-survey that covers the frequency range from 211 to 275 GHz and was obtained with ALMA (angular resolution of 0.4 arcsec) to study the small-scale structure of the dense gas in Sagittarius B2 (north). Eight fila ments are found converging to the central hub and extending for about 0.1 pc. The spatial structure, together with the presence of the massive central region, suggest that these filaments may be associated with accretion processes. In order to derive the kinematic properties of the gas in a chemically line-rich source like Sgr B2(N), we have developed a new tool that stacks all the detected transition lines of any molecular species. This permits to increase the signal-to-noise ratio of our observations and average out line blending effects, which are a common problem in line-rich regions. We derive velocity gradients along the filaments of about 20-100 km s$^{-1}$ pc$^{-1}$, which are 10-100 times larger than those typically found on larger scales (1 pc) in other star-forming regions. The mass accretion rates of individual filaments are about 0.05 M$_odot$ yr$^{-1}$, which result in a total accretion rate of 0.16 M$_odot$ yr$^{-1}$. Some filaments harbor dense cores that are likely forming stars and stellar clusters. The stellar content of these dense cores is on the order of 50% of the total mass. We conclude that the cores may merge in the center when already forming stellar clusters but still containing a significant amount of gas, resulting in a damp merger. The high density and mass of the central region, combined with the presence of converging filaments with high mass, high accretion rates and embedded dense cores already forming stars, suggest that Sgr B2(N) may have the potential to evolve into a super stellar cluster.
Recent submillimeter and far-infrared wavelength observations of absorption in the rotational ground-state lines of various simple molecules against distant Galactic continuum sources have opened the possibility of studying the chemistry of diffuse m olecular clouds throughout the Milky Way. In order to calculate abundances, the column densities of molecular and atomic hydrogen, HI, must be known. We aim at determining the atomic hydrogen column densities for diffuse clouds located on the sight lines toward a sample of prominent high-mass star-forming regions that were intensely studied with the HIFI instrument onboard Herschel. Based on Jansky Very Large Array data, we employ the 21 cm HI absorption-line technique to construct profiles of the HI opacity versus radial velocity toward our target sources. These profiles are combined with lower resolution archival data of extended HI emission to calculate the HI column densities of the individual clouds along the sight lines. We employ Bayesian inference to estimate the uncertainties of the derived quantities. Our study delivers reliable estimates of the atomic hydrogen column density for a large number of diffuse molecular clouds at various Galactocentric distances. Together with column densities of molecular hydrogen derived from its surrogates observed with HIFI, the measurements can be used to characterize the clouds and investigate the dependence of their chemistry on the molecular fraction, for example.
Context. Insight into the conditions that drive the physics and chemistry in interstellar clouds is gained from determining the abundance and charge state of their components. Aims. We propose an evaluation of the C60:C60+ ratio in diffuse and transl ucent interstellar clouds that exploits electronic absorption bands so as not to rely on ambiguous IR emission measurements. Methods. The ratio is determined by analyzing archival spectra and literature data. Information on the cation population is obtained from published characteristics of the main diffuse interstellar bands attributed to C60+ and absorption cross sections already reported for the vibronic bands of the cation. The population of neutral molecules is described in terms of upper limit because the relevant vibronic bands of C60 are not brought out by observations. We revise the oscillator strengths reported for C60 and measure the spectrum of the molecule isolated in Ne ice to complete them. Results. We scale down the oscillator strengths for absorption bands of C60 and find an upper limit of approximately 1.3 for the C60:C60+ ratio. Conclusions. We conclude that the fraction of neutral molecules in the buckminsterfullerene population of diffuse and translucent interstellar clouds may be notable despite the non-detection of the expected vibronic bands. More certainty will require improved laboratory data and observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا