ﻻ يوجد ملخص باللغة العربية
We study the spontaneous emission of agglomerates of two-level quantum emitters embedded in a correlated transparent metal. The characteristic emission energy corresponds to the splitting between ground and excited states of a neutral, nonmagnetic molecular impurity (F color center), while correlations are due to the existence of narrow bands in the metal. This is the case of transition metal oxides with an ABO3 Perovskite structure, such as SrVO3 and CaVO3, where oxygen vacancies are responsible for the emission of visible light, while the correlated metallic nature arises from the partial filling of a band with mostly d-orbital character. For these systems we put forward an interdisciplinary, tunable mechanism to control light emission governed by electronic correlations. We show that not only there exists a critical value for the correlation strength above which the metal becomes transparent in the visible, but also that strong correlations can lead to a remarkable enhancement of the light-matter coupling. By unveiling the role of electronic correlations in spontaneous emission, our findings set the basis for the design of controllable, solid-state, single-photon sources in correlated transparent metals.
To clarify the nature of correlations in Hund metals and its relationship with Mott physics we analyze the electronic correlations in multiorbital systems as a function of intraorbital interaction U, Hunds coupling JH and electronic filling n. We sho
The validity of the structure-property relationships governing the deformation behavior of bcc metals was brought into question with recent {it ab initio} density functional studies of isolated screw dislocations in Mo and Ta. These existing relation
The interface between the two band insulators SrTiO3 and LaAlO3 unexpectedly has the properties of a two dimensional electron gas. It is even superconducting with a transition temperature, Tc, that can be tuned using gate bias Vg, which controls the
We study the interaction effect in a three dimensional Dirac semimetal and find that two competing orders, charge-density-wave orders and nematic orders, can be induced to gap the Dirac points. Applying a magnetic field can further induce an instabil
Transition metal dichalcogenides (TMDC) are a rich family of two-dimensional materials displaying a multitude of different quantum ground states. In particular, d$^3$ TMDCs are paradigmatic materials hosting a variety of symmetry broken states, inclu