ﻻ يوجد ملخص باللغة العربية
We present a broad band spectral analysis of the black hole binary GX~339-4 with NuSTAR and Swift using high density reflection model. The observations were taken when the source was in low flux hard states (LF) during the outbursts in 2013 and 2015, and in a very high flux soft state (HF) in 2015. The high density reflection model can explain its LF spectra with no requirement for an additional low temperature thermal component. This model enables us to constrain the density in the disc surface of GX~339-4 in different flux states. The disc density in the LF state is $log(n_{rm e}/$ cm$^{-3})approx21$, 100 times higher than the density in the HF state ($log(n_{rm e}/$ cm$^{-3})=18.93^{+0.12}_{-0.16}$). A close-to-solar iron abundance is obtained by modelling the LF and HF broad band spectra with variable density reflection model ($Z_{rm Fe}=1.50^{+0.12}_{-0.04}Z_{odot}$ and $Z_{rm Fe}=1.05^{+0.17}_{-0.15}Z_{odot}$ respectively).
We extract all the XMM-Newton EPIC pn burst mode spectra of GX 339-4, together with simultaneous/contemporaneous RXTE data. These include three disc dominated and two soft intermediate spectra, and the combination of broad bandpass/moderate spectral
We analyze seven NICER and NuSTAR epochs of the black hole X-ray binary GX 339-4 in the hard state during its two most recent hard-only outbursts in 2017 and 2019. These observations cover the 1-100 keV unabsorbed luminosities between 0.3% and 2.1% o
We present an analysis of NuSTAR observations of a hard intermediate state of the transient black hole GX 339-4 taken in January 2015. As the source softened significantly over the course of the 1.3 d-long observation we split the data into 21 sub-se
Black hole X-ray binaries display large outbursts, during which their properties are strongly variable. We develop a systematic spectral analysis of the 3-40 keV RXTE/PCA data in order to study the evolution of these systems and apply it to GX 339-4.
The existing radio and X-ray flux correlation for Galactic black holes in the hard and quiescent states relies on a sample which is mostly dominated by two sources (GX 339-4 and V404 Cyg) observed in a single outburst. In this paper, we report on a s