ﻻ يوجد ملخص باللغة العربية
Long period comet C/2014 B1 (Schwartz) exhibits a remarkable optical appearance, like that of a discus or bi-convex lens viewed edgewise. Our measurements in the four years since discovery reveal a unique elongated dust coma whose orientation is stable with respect to the projected anti-solar and orbital directions. With no tail and no trail, the limited influence of radiation pressure on the dust coma sets a lower limit to the effective particle size of 0.1 mm, while the photometry reveals a peak coma scattering cross-section 27,000 sq km (geometric albedo 0.1 assumed). From the rate of brightening of the comet we infer a dust production rate of order 10 kg/s at 10 AU heliocentric distance, presumably due to the sublimation of supervolatile ices, and perhaps triggered by the crystallization of amorphous water ice. We consider several models for the origin of the peculiar morphology. The disk-like shape is best explained by equatorial ejection of particles from a nucleus whose spin vector lies near the plane of the sky. In this interpretation, the unique appearance of C/2014 B1 is a result of a near equality between the rotation-assisted nucleus escape speed (1 to 10 m/s for a 2 to 20 kilometer-scale nucleus) and the particle ejection velocity, combined with a near-equatorial viewing perspective. To date, most other comets have been studied at heliocentric distances less than half that of C/2014 B1, where their nucleus temperatures, gas fluxes and dust ejection speeds are much higher. The throttling role of nucleus gravity is correspondingly diminished, so that the disk morphology has not before been observed.
We analyze the dust environment of the distant comet C/2014 A4 (SONEAR), with a perihelion distance near 4.1~au, using comprehensive observations obtained by different methods. We present an analysis of spectroscopy, photometry, and polarimetry of co
Comet composition provides critical information on the chemical and physical processes that took place during the formation of the Solar system. We report here on millimetre spectroscopic observations of the long-period bright comet C/2014 Q2 (Lovejo
Observations of C/2014 Q2 (Lovejoy) comet were carried out on 7th February, 2015, at the observation station in Mayaki village (No. 583 -- Odesa-Mayaki observatory). The integrated-light photometry of the comet was conducted using RC-800 telescope (D
We performed a monitoring observation of a Jupiter-Family comet, 17P/Holmes, during its 2014 perihelion passage to investigate its secular change in activity. The comet has drawn the attention of astronomers since its historic outburst in 2007, and t
Distant long-period comet C/2017 K2 has been outside the planetary region of the solar system for 3 Myr, negating the possibility that heat retained from the previous perihelion could be responsible for its activity. This inbound comet is also too co