ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation and transport of magnetic flux in accretion-ejection flows

61   0   0.0 ( 0 )
 نشر من قبل Ioannis Contopoulos
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Astrophysical accretion flows are associated with energetic emission of radiation and outflows (winds and jets). Extensive observations of these two processes in X-ray binary outbursts are available. A convincing understanding of their dynamics remains, however, elusive. The main agent that controls the dynamics is believed to be a large scale magnetic field that threads the system. We propose that during the quiescent state, the field is held in place by a delicate balance between inward advection and outward diffusion through the accreting matter. We also propose that the source of the field is a growing toroidal electric current generated by the aberrated radiation pressure on the innermost plasma electrons in orbit around the central black hole. This is the astrophysical mechanism of the Cosmic Battery. When the return magnetic field outside the toroidal electric current diffuses through the surrounding disk, the disk magnetic field and its associated accretion rate gradually increase, thus leading the system to an outburst. After the central accretion flow approaches equipartition with radiation, it is disrupted, and the Cosmic Battery ceases to operate. The outward field diffusion is then reversed, magnetic flux reconnects with the flux accumulated around the central black hole and disappears. The magnetic field and the associated accretion rate slowly decrease, and the system is gradualy driven back to quiescence. We conclude that the action (or inaction) of the Cosmic Battery may be the missing key that will allow us to understand the long-term evolution of astrophysical accretion-ejection flows.

قيم البحث

اقرأ أيضاً

116 - Brian T. Welsch 2017
Coronal mass ejections (CMEs) are the primary drivers of severe space weather disturbances in the heliosphere. Models of CME dynamics have been proposed that do not fully include the effects of magnetic reconnection on the forces driving the ejection . Both observations and numerical modeling, however, suggest that reconnection likely plays a major role in most, if not all, fast CMEs. Here, we theoretically investigate the accretion of magnetic flux onto a rising ejection by reconnection involving the ejections background field. This reconnection alters the magnetic structure of the ejection and its environment, thereby modifying the forces acting upon the ejection, generically increasing its upward acceleration. The modified forces, in turn, can more strongly drive the reconnection. This feedback process acts, effectively, as an instability, which we refer to as a reconnective instability. Our analysis implies that CME models that neglect the effects of reconnection cannot accurately describe observed CME dynamics. Our ultimate aim is to understand changes in CME acceleration in terms of observable properties of magnetic reconnection, such as the amount of reconnected flux. This flux can be estimated from observations of flare ribbons and photospheric magnetic fields.
Protostellar flares are rapid magnetic energy release events associated with formation of hot plasma in protostars. In the previous models of protostellar flares, the interaction between a protostellar magnetosphere with the surrounding disk plays cr ucial roles in building-up and releasing the magnetic energy. However, it remains unclear if protostars indeed have magnetospheres because vigorous disk accretion and strong disk magnetic fields in the protostellar phase may destroy the magnetosphere. Considering this possibility, we investigate the energy accumulation and release processes in the absence of a magnetosphere using a three-dimensional magnetohydrodynamic simulation. Our simulation reveals that protostellar flares are repeatedly produced even in such a case. Unlike in the magnetospheric models, the protostar accumulates magnetic energy by acquiring large-scale magnetic fields from the disk by accretion. Protostellar flares occur when a portion of the large-scale magnetic fields are removed from the protostar as a result of magnetic reconnection. Protostellar flares in the simulation are consistent with observations; the released magnetic energy (up to $sim 3times 10^{38}$ erg) is large enough to drive observed flares, and the flares produce hot ejecta. The expelled magnetic fields enhance accretion, and the energy build-up and release processes are repeated as a result. The magnetic flux removal via reconnection leads to redistribution of magnetic fields in the inner disk. We therefore consider that protostellar flares will play an important role in the evolution of the disk magnetic fields in the vicinity of protostars.
241 - J. M. Miller 2009
Disk accretion may be the fundamental astrophysical process. Stars and planets form through the accretion of gas in a disk. Black holes and galaxies co-evolve through efficient disk accretion onto the central supermassive black hole. Indeed, approxim ately 20 percent of the ionizing radiation in the universe is supplied by disk accretion onto black holes. And large-scale structures - galaxy clusters - are dramatically affected by the relativistic jets that result from accretion onto black holes. Yet, we are still searching for observational answers to some very basic questions that underlie all aspects of the feedback between black holes and their host galaxies: How do disks transfer angular momentum to deliver gas onto compact objects? How do accretion disks launch winds and jets?
146 - Xue-Ning Bai 2014
Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhance s the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few disk scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the magnetic diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.
This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of active galactic nuclei. For a summary, we refer to the paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا