ﻻ يوجد ملخص باللغة العربية
Black hole solutions in general relativity are simple. The frequency spectrum of linear perturbations around these solutions (i.e., the quasinormal modes) is also simple, and therefore it is a prime target for fundamental tests of black hole spacetimes and of the underlying theory of gravity. The following technical calculations must be performed to understand the imprints of any modified gravity theory on the spectrum: 1. Identify a healthy theory; 2. Find black hole solutions within the theory; 3. Compute the equations governing linearized perturbations around the black hole spacetime; 4. Solve these equations to compute the characteristic quasinormal modes. In this work (the first of a series) we assume that the background spacetime has spherical symmetry, that the relevant physics is always close to general relativity, and that there is no coupling between the perturbation equations. Under these assumptions, we provide the general numerical solution to step 4. We provide publicly available data files such that the quasinormal modes of {em any} spherically symmetric spacetime can be computed (in principle) to arbitrary precision once the linearized perturbation equations are known. We show that the isospectrality between the even- and odd-parity quasinormal mode spectra is fragile, and we identify the necessary conditions to preserve it. Finally, we point out that new modes can appear in the spectrum even in setups that are perturbatively close to general relativity.
Linear perturbations of spherically symmetric spacetimes in general relativity are described by radial wave equations, with potentials that depend on the spin of the perturbing field. In previous work we studied the quasinormal mode spectrum of space
The parametrized black hole quasinormal ringdown formalism is useful to compute quasinormal mode (QNM) frequencies if a master equation for the gravitational perturbation around a black hole has a small deviation from the Regge-Wheeler or Zerilli equ
Deep conceptual problems associated with classical black holes can be addressed in string theory by the fuzzball paradigm, which provides a microscopic description of a black hole in terms of a thermodynamically large number of regular, horizonless,
The motion of photons around black holes determines the shape of shadow and match the ringdown properties of a perturbed black hole. Observations of shadows and ringdown waveforms will reveal the nature of black holes. In this paper, we study the mot
Black-hole spectroscopy is arguably the most promising tool to test gravity in extreme regimes and to probe the ultimate nature of black holes with unparalleled precision. These tests are currently limited by the lack of a ringdown parametrization th