ترغب بنشر مسار تعليمي؟ اضغط هنا

Parametrized black hole quasinormal ringdown. I. Decoupled equations for nonrotating black holes

169   0   0.0 ( 0 )
 نشر من قبل Andrea Maselli
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Black hole solutions in general relativity are simple. The frequency spectrum of linear perturbations around these solutions (i.e., the quasinormal modes) is also simple, and therefore it is a prime target for fundamental tests of black hole spacetimes and of the underlying theory of gravity. The following technical calculations must be performed to understand the imprints of any modified gravity theory on the spectrum: 1. Identify a healthy theory; 2. Find black hole solutions within the theory; 3. Compute the equations governing linearized perturbations around the black hole spacetime; 4. Solve these equations to compute the characteristic quasinormal modes. In this work (the first of a series) we assume that the background spacetime has spherical symmetry, that the relevant physics is always close to general relativity, and that there is no coupling between the perturbation equations. Under these assumptions, we provide the general numerical solution to step 4. We provide publicly available data files such that the quasinormal modes of {em any} spherically symmetric spacetime can be computed (in principle) to arbitrary precision once the linearized perturbation equations are known. We show that the isospectrality between the even- and odd-parity quasinormal mode spectra is fragile, and we identify the necessary conditions to preserve it. Finally, we point out that new modes can appear in the spectrum even in setups that are perturbatively close to general relativity.



قيم البحث

اقرأ أيضاً

Linear perturbations of spherically symmetric spacetimes in general relativity are described by radial wave equations, with potentials that depend on the spin of the perturbing field. In previous work we studied the quasinormal mode spectrum of space times for which the radial potentials are slightly modified from their general relativistic form, writing generic small modifications as a power-series expansion in the radial coordinate. We assumed that the perturbations in the quasinormal frequencies are linear in some perturbative parameter, and that there is no coupling between the perturbation equations. In general, matter fields and modifications to the gravitational field equations lead to coupled wave equations. Here we extend our previous analysis in two important ways: we study second-order corrections in the perturbative parameter, and we address the more complex (and realistic) case of coupled wave equations. We highlight the special nature of coupling-induced corrections when two of the wave equations have degenerate spectra, and we provide a ready-to-use recipe to compute quasinormal modes. We illustrate the power of our parametrization by applying it to various examples, including dynamical Chern-Simons gravity, Horndeski gravity and an effective field theory-inspired model.
85 - Masashi Kimura 2020
The parametrized black hole quasinormal ringdown formalism is useful to compute quasinormal mode (QNM) frequencies if a master equation for the gravitational perturbation around a black hole has a small deviation from the Regge-Wheeler or Zerilli equ ation. In this formalism, the deviation of QNM frequency from general relativity can be calculated by small deviation parameters and model independent coefficients. In this paper, we derive recursion relations for the model independent coefficients. Using these relations, the higher order coefficients are written only by the lower order coefficients. Thus, we only need the lower order coefficients when we numerically compute the model independent coefficients.
Deep conceptual problems associated with classical black holes can be addressed in string theory by the fuzzball paradigm, which provides a microscopic description of a black hole in terms of a thermodynamically large number of regular, horizonless, geometries with much less symmetry than the corresponding black hole. Motivated by the tantalizing possibility to observe quantum gravity signatures near astrophysical compact objects in this scenario, we perform the first $3+1$ numerical simulations of a scalar field propagating on a large class of multicenter geometries with no spatial isometries arising from ${cal N}=2$ four-dimensional supergravity. We identify the prompt response to the perturbation and the ringdown modes associated with the photon sphere, which are similar to the black-hole case, and the appearence of echoes at later time, which is a smoking gun of the absence of a horizon and of the regular interior of these solutions. The response is in agreement with an analytical model based on geodesic motion in these complicated geometries. Our results provide the first numerical evidence for the dynamical linear stability of fuzzballs, and pave the way for an accurate discrimination between fuzzballs and black holes using gravitational-wave spectroscopy.
The motion of photons around black holes determines the shape of shadow and match the ringdown properties of a perturbed black hole. Observations of shadows and ringdown waveforms will reveal the nature of black holes. In this paper, we study the mot ion of photons in a general parametrized metric beyond the Kerr hypothesis. We investigated the radius and frequency of the photon circular orbits on the equatorial plane and obtained fitted formula with varied parameters. The Lyapunov exponent which connects to the decay rate of the ringdown amplitude is also calculated. We also analyzed the shape of shadow with full parameters of the generally axisymmetric metric. Our results imply the potential constraint on black hole parameters by combining the Event Horizon Telescope and gravitational wave observations in the future.
Black-hole spectroscopy is arguably the most promising tool to test gravity in extreme regimes and to probe the ultimate nature of black holes with unparalleled precision. These tests are currently limited by the lack of a ringdown parametrization th at is both robust and accurate. We develop an observable-based parametrization of the ringdown of spinning black holes beyond general relativity, which we dub ParSpec (Parametrized Ringdown Spin Expansion Coefficients). This approach is perturbative in the spin, but it can be made arbitrarily precise (at least in principle) through a high-order expansion. It requires O(10) ringdown detections, which should be routinely available with the planned space mission LISA and with third-generation ground-based detectors. We provide a preliminary analysis of the projected bounds on parametrized ringdown parameters with LISA and with the Einstein Telescope, and discuss extensions of our model that can be straightforwardly included in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا