ﻻ يوجد ملخص باللغة العربية
Chondrites are undifferentiated sediments of material left over from the earliest solar system and are widely considered as representatives of the unprocessed building blocks of the terrestrial planets. The chondrites, along with processed igneous meteorites, have been divided into two broad categories based upon their isotopic signatures; these have been termed the CC and NC groups and have been interpreted as reflecting their distinctive birth places within the solar system. The isotopic distinctiveness of NC and CC meteorites document limited radial-mixing in the accretionary disk. The enstatite and ordinary chondrites are NC-type and likely represent samples from inner solar system (likely $<$4 AU). Measurement and modeling of ratios of refractory lithophile elements (RLE) in enstatite chondrites establish these meteorites as the closest starting materials for the bulk of the silicate Earth and the core. Comparing chondritic and terrestrial RLE ratios demonstrate that the Bulk Silicate Earth, not the core, host the Earths inventory of Ti, Zr, Nb, and Ta, but not the full complement of V.
The inner regions of protoplanetary discs (from $sim$ 0.1 to 10 au) are the expected birthplace of planets, especially telluric. In those high temperature regions, solids can experience cyclical annealing, vaporisation and recondensation. Hot and war
The stellar halos of galaxies encode their accretion histories. In particular, the median metallicity of a halo is determined primarily by the mass of the most massive accreted object. We use hydrodynamical cosmological simulations from the APOSTLE p
Geochemical and astronomical evidence demonstrate that planet formation occurred in two spatially and temporally separated reservoirs. The origin of this dichotomy is unknown. We use numerical models to investigate how the evolution of the solar prot
The galactic halo likely grew over time in part by assembling smaller galaxies, the so-called building blocks. We investigate if the properties of these building blocks are reflected in the halo white dwarf (WD) population in the Solar neighborhood.
The most abundant components of primitive meteorites (chondrites) are millimeter-sized glassy spherical chondrules formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules, we show that primar