ترغب بنشر مسار تعليمي؟ اضغط هنا

Maxwell-type models for the effective thermal conductivity of a porous material with radiative transfer in the voids

96   0   0.0 ( 0 )
 نشر من قبل Robert Van Gorder
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There are several models for the effective thermal conductivity of two-phase composite materials in terms of the conductivity of the solid and the disperse material. In this paper, we generalise three models of Maxwell type (namely, the classical Maxwell model and two generalisations of it obtained from effective medium theory and differential effective medium theory) so that the resulting effective thermal conductivity accounts for radiative heat transfer within gas voids. In the high-temperature regime, radiative transfer within voids strongly influences the thermal conductivity of the bulk material. Indeed, the utility of these models over classical Maxwell-type models is seen in the high-temperature regime, where they predict that the effective thermal conductivity of the composite material levels off to a constant value (as a function of temperature) at very high temperatures, provided that the material is not too porous, in agreement with experiments. This behaviour is in contrast to models which neglect radiative transfer within the pores, or lumped parameter models, as such models do not resolve the radiative transfer independently from other physical phenomena. Our results may be of particular use for industrial and scientific applications involving heat transfer within porous composite materials taking place in the high-temperature regime.

قيم البحث

اقرأ أيضاً

Porous materials provide a large surface to volume ratio, thereby providing a knob to alter fundamental properties in unprecedented ways. In thermal transport, porous nanomaterials can reduce thermal conductivity by not only enhancing phonon scatteri ng from the boundaries of the pores and therefore decreasing the phonon mean free path, but also by reducing the phonon group velocity. Here we establish a structure-property relationship by measuring the porosity and thermal conductivity of individual electrolessly etched single crystalline silicon nanowires using a novel electron beam heating technique. Such porous silicon nanowires exhibit extremely low diffusive thermal conductivity (as low as 0.33 Wm-1K-1 at 300K for 43% porosity), even lower than that of amorphous silicon. The origin of such ultralow thermal conductivity is understood as a reduction in the phonon group velocity, experimentally verified by measuring the Young modulus, as well as the smallest structural size ever reported in crystalline Silicon (less than 5nm). Molecular dynamics simulations support the observation of a drastic reduction in thermal conductivity of silicon nanowires as a function of porosity. Such porous materials provide an intriguing platform to tune phonon transport, which can be useful in the design of functional materials towards electronics and nano-electromechanical systems.
To further reduce the lattice thermal conductivity of thermoelectric materials, the technique of embedding nano-inclusions into bulk matrix materials, in addition to point defect scattering via alloying, was widely applied. Differential Effective Med ium (DEM) method was employed to calculate two-phase heterogeneous systems. However, in most effective medium treatment, the interface scattering of matrix phonons by embedded nanoparticle was underestimated by adopting particles projected area as scattering cross-section. Herein, modified cross-section calculations, as well as grain sizes dispersions, are applied in DEM, with the calculations then validated by comparing with Monte-Carlo simulations and existing experimental data. Predictions of lattice thermal conductivity reduction on in-situ formed Full Heusler(FH)/Half Heusler(HH) nano/matrix system are discussed.
By means of extensive ab initio calculations, a new two-dimensional (2D) atomic material tin selenide monolayer (coined as tinselenidene) is predicted to be a semiconductor with an indirect gap (1.45 eV) and a high hole mobility (of order 10000 cm2V- 1S-1), and will bear an indirect-direct gap transition under a rather low strain (<0.5 GPa). Tinselenidene has a very small Youngs modulus (20-40 GPa) and an ultralow lattice thermal conductivity (<3 Wm-1K-1 at 300 K), making it probably the most flexible and most heat-insulating material in known 2D atomic materials. In addition, tinseleniden has a large negative Poissons ratio of -0.17, thus could act as a 2D auxetic material. With these intriguing properties, tinselenidene could have wide potential applications in thermoelectrics, nanomechanics and optoelectronics.
In dense systems composed of numerous nanoparticles, direct simulations of near-field radiative heat transfer (NFRHT) require considerable computational resources. NFRHT for the simple one-dimensional nanoparticle chains embedded in a non-absorbing h ost medium is investigated from the point of view of the continuum by means of an approach combining the many-body radiative heat transfer theory and the Fourier law. Effects of the phase change of the insulator-metal transition material (VO$_2$), the complex many-body interaction (MBI) and the host medium relative permittivity on the characteristic effective thermal conductivity (ETC) are analyzed. The ETC for VO$_2$ nanoparticle chains below the transition temperature can be as high as 50 times of that above the transition temperature due to the phase change effect. The strong coupling in the insulator-phase VO$_2$ nanoparticle chain accounts for its high ETC as compared to the low ETC for the chain at the metallic phase, where there is a mismatch between the characteristic thermal frequency and resonance frequency. The strong MBI is in favor of the ETC. For SiC nanoparticle chains, the MBI even can double the ETC as compared to those without considering the MBI effect. For the dense chains, a strong MBI enhances the ETC due to the strong inter-particles couplings. When the chains go more and more dilute, the MBI can be neglected safely due to negligible couplings. The host medium relative permittivity significantly affects the inter-particles couplings, which accounts for the permittivity-dependent ETC for the VO$_2$ nanoparticle chains.
Morphological measures are introduced to probe the complex procedure of shock wave reaction on porous material. They characterize the geometry and topology of the pixelized map of a state variable like the temperature. Relevance of them to thermodyna mical properties of material is revealed and various experimental conditions are simulated. Numerical results indicate that, the shock wave reaction results in a complicated sequence of compressions and rarefactions in porous material. The increasing rate of the total fractional white area $A$ roughly gives the velocity $D$ of a compressive-wave-series. When a velocity $D$ is mentioned, the corresponding threshold contour-level of the state variable, like the temperature, should also be stated. When the threshold contour-level increases, $D$ becomes smaller. The area $A$ increases parabolically with time $t$ during the initial period. The $A(t)$ curve goes back to be linear in the following three cases: (i) when the porosity $delta$ approaches 1, (ii) when the initial shock becomes stronger, (iii) when the contour-level approaches the minimum value of the state variable. The area with high-temperature may continue to increase even after the early compressive-waves have arrived at the downstream free surface and some rarefactive-waves have come back into the target body. In the case of energetic material ... (see the full text)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا