ﻻ يوجد ملخص باللغة العربية
We demonstrate a system composed of two resonators that are coupled solely through a nonlinear interaction, and where the linear properties of each resonator can be controlled locally. We show that this class of dynamical systems has peculiar properties with important consequences for the study of classical and quantum nonlinear optical phenomena. As an example we discuss the case of dual-pump spontaneous four-wave mixing.
We experimentally demonstrate stimulated four-wave mixing in two linearly uncoupled integrated Si$_3$N$_4$ micro-resonators. In our structure the resonance combs of each resonator can be tuned independently, with the energy transfer from one resonato
We present a detailed analysis of strongly driven spontaneous four-wave mixing in a lossy integrated microring resonator side-coupled to a channel waveguide. A nonperturbative, analytic solution within the undepleted pump approximation is developed f
The rising need for hybrid physical platforms has triggered a renewed interest for the development of agile radio-frequency phononic circuits with complex functionalities. The combination of travelling waves with resonant mechanical elements appears
We present a scheme for tuning and controlling nano mechanical resonators by subjecting them to electrostatic gradient fields, provided by nearby tip electrodes. We show that this approach enables access to a novel regime of optomechanics, where the
We investigate nonlinear dispersive mode coupling between the flexural in- and out-of-plane modes of two doubly clamped, nanomechanical silicon nitride string resonators. As the amplitude of one mode transitions from the linear response regime into t