ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of Spin Diffusion and Suppression of the Hanle Effect by the Coexistence of Spin and Valley Hall Effects

44   0   0.0 ( 0 )
 نشر من قبل Xian-Peng Zhang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In addition to spin, electrons in many materials possess an additional pseudo-spin degree of freedom known as valley. In materials where the spin and valley degrees of freedom are weakly coupled, they can be both excited and controlled independently. In this work, we study a model describing the interplay of the spin and valley Hall effects in such two-dimensional materials. We demonstrate the emergence of an additional longitudinal neutral current that is both spin and valley polarized. The additional neutral current allows to control the spin density by tuning the magnitude of the valley Hall effect. In addition, the interplay of the two effects can suppress the Hanle effect, that is, the oscillation of the nonlocal resistance of a Hall bar device with in-plane magnetic field. The latter observation provides a possible explanation for the absence of the Hanle effect in a number of recent experiments. Our work opens also the possibility to engineer the conversion between the valley and spin degrees of freedom in two-dimensional materials.

قيم البحث

اقرأ أيضاً

Electrically generated spin accumulation due to the spin Hall effect is imaged in n-GaAs channels using Kerr rotation microscopy, focusing on its spatial distribution and time-averaged behavior in a magnetic field. Spatially-resolved imaging reveals that spin accumulation observed in transverse arms develops due to longitudinal drift of spin polarization produced at the sample boundaries. One- and two-dimensional drift-diffusion modeling is used to explain these features, providing a more complete understanding of observations of spin accumulation and the spin Hall effect.
93 - Y. Niimi , M. Kimata , Y. Omori 2015
We have measured spin Hall effects in spin glass metals, CuMnBi alloys, with the spin absorption method in the lateral spin valve structure. Far above the spin glass temperature Tg where the magnetic moments of Mn impurities are randomly frozen, the spin Hall angle of CuMnBi ternary alloy is as large as that of CuBi binary alloy. Surprisingly, however, it starts to decrease at about 4Tg and becomes as little as 7 times smaller at 0.5Tg. A similar tendency was also observed in anomalous Hall effects in the ternary alloys. We propose an explanation in terms of a simple model considering the relative dynamics between the localized moment and the conduction electron spin.
We have succeeded in fully describing dynamic properties of spin current including the different spin absorption mechanism for longitudinal and transverse spins in lateral spin valves, which enables to elucidate intrinsic spin transport and relaxatio n mechanism in the nonmagnet. The deduced spin lifetimes are found independent of the contact type. From the transit-time distribution of spin current extracted from the Fourier transform in Hanle measurement data, the velocity of the spin current in Ag with Py/Ag Ohmic contact turns out much faster than that expected from the widely used model.
We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal wi th high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.
In the normal metal/ferromagnetic insulator bilayer (such as Pt/Y$_{3}$Fe$_{5}$O$_{12}$) and the normal metal/ferromagnetic metal/oxide trilayer (such as Pt/Co/AlO$_{x}$) where spin injection and ejection are achieved by the spin Hall effect in the n ormal metal, we propose a minimal model based on quantum tunneling of spins to explain the spin-transfer torque and spin pumping caused by the spin Hall effect. The ratio of their damping-like to field-like component depends on the tunneling wave function that is strongly influenced by generic material properties such as interface $s-d$ coupling, insulating gap, and layer thickness, yet the spin relaxation plays a minor role. The quantified result renders our minimal model an inexpensive tool for searching for appropriate materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا