ترغب بنشر مسار تعليمي؟ اضغط هنا

Accretion geometry of the black-hole binary Cygnus X-1 from X-ray polarimetry

75   0   0.0 ( 0 )
 نشر من قبل Hiromitsu Takahashi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Black-hole binary (BHB) systems comprise a stellar-mass black hole and a closely orbiting companion star. Matter is transferred from the companion to the black hole, forming an accretion disk, corona and jet structures. The resulting release of gravitational energy leads to emission of X-rays. The radiation is affected by special/general relativistic effects, and can serve as a probe of the properties of the black hole and surrounding environment, if the accretion geometry is properly identified. Two competing models describe the disk-corona geometry for the hard spectral state of BHBs, based on spectral and timing measurements. Measuring the polarization of hard X-rays reflected from the disk allows the geometry to be determined. The extent of the corona differs between the two models, affecting the strength of relativistic effects (e.g., enhancement of polarization fraction and rotation of polarization angle). Here, we report observational results on linear polarization of hard X-ray (19-181 keV) emission from a BHB, Cygnus X-1, in the hard state. The low polarization fraction, <8.6% (upper limit at 90% confidence level), and the alignment of the polarization angle with the jet axis show that the dominant emission is not influenced by strong gravity. When considered together with existing spectral and timing data, our result reveals that the accretion corona is either an extended structure, or is located far from the black hole in the hard state of Cygnus X-1.

قيم البحث

اقرأ أيضاً

Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-1 with the INTEGRAL/IBIS telescope. Spectral modeling of the data reveals two emission mechanisms: The 250-400 keV data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.
We present simultaneous multi-band radio and X-ray observations of the black hole X-ray binary Cygnus X-1, taken with the Karl G. Jansky Very Large Array and the Nuclear Spectroscopic Telescope Array. With these data, we detect clear flux variability consistent with emission from a variable compact jet. To probe how the variability signal propagates down the jet flow, we perform detailed timing analyses of our data. We find that the radio jet emission shows no significant power at Fourier frequencies $fgtrsim0.03$ Hz (below $sim30$ sec timescales), and that the higher frequency radio bands (9/11 GHz) are strongly correlated over a range of timescales, displaying a roughly constant time lag with Fourier frequency of a few tens of seconds. However, in the lower frequency radio bands (2.5/3.5 GHz) we find a significant loss of coherence over the same range of timescales. Further, we detect a correlation between the X-ray/radio emission, measuring time lags between the X-ray/radio bands on the order of tens of minutes. We use these lags to solve for the compact jet speed, finding that the Cyg X-1 jet is more relativistic than usually assumed for compact jets, where $beta=0.92^{+0.03}_{-0.06}$, ($Gamma=2.59^{+0.79}_{-0.61}$). Lastly, we constrain how the jet size scale changes with frequency, finding a shallower relation ($propto u^{-0.4}$) than predicted by simple jet models ($propto u^{-1}$), and estimate a jet opening angle of $phisim0.4-1.8$ degrees. With this study, we have developed observational techniques designed to overcome the challenges of radio timing analyses and created the tools needed to connect rapid radio jet variability properties to internal jet physics.
We study X-ray spectra from the outburst rise of the accreting black-hole binary MAXI J1820+070. We find that models having the disk inclinations within those of either the binary or the jet imply significant changes of the accretion disk inner radiu s during the luminous part of the hard spectral state, with that radius changing from $>$100 to $sim$10 gravitational radii. The main trend is a decrease with the decreasing spectral hardness. Our analysis requires the accretion flow to be structured, with at least two components with different spectral slopes. The harder component dominates the bolometric luminosity and produces strong, narrow, X-ray reflection features. The softer component is responsible for the underlying broader reflection features. The data are compatible with the harder component having a large scale height, located downstream the disk truncation radius, and reflecting mostly from remote parts of the disk. The softer component forms a corona above the disk up to some transition radius. Our findings can explain the changes of the characteristic variability time scales, found in other works, as being driven by the changes of the disk characteristic radii.
The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observations. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Buil ding on these results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black holes accretion disk by fitting its thermal continuum spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-1 contains a near-extreme Kerr black hole with a spin parameter a/M>0.95 (3sigma). For a less probable (synchronous) dynamical model, we find a/M>0.92 (3sigma). In our analysis, we include the uncertainties in black hole mass, orbital inclination angle and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disks low luminosity.
The black hole MAXI J1820+070 was discovered during its 2018 outburst and was extensively monitored across the electromagnetic spectrum. Following the detection of relativistic radio jets, we obtained four Chandra X-ray observations taken between 201 8 November and 2019 May, along with radio observations conducted with the VLA and MeerKAT arrays. We report the discovery of X-ray sources associated with the radio jets moving at relativistic velocities with a possible deceleration at late times. The broadband spectra of the jets are consistent with synchrotron radiation from particles accelerated up to very high energies (>10 TeV) by shocks produced by the jets interacting with the interstellar medium. The minimal internal energy estimated from the X-ray observations for the jets is $sim 10^{41}$ erg, significantly larger than the energy calculated from the radio flare alone, suggesting most of the energy is possibly not radiated at small scales but released through late-time interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا