ترغب بنشر مسار تعليمي؟ اضغط هنا

Interfacial Spin Seebeck effect in noncollinear magnetic systems

164   0   0.0 ( 0 )
 نشر من قبل Benedetta Flebus
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interplay between spin and heat currents at magnetic insulator|nonmagnetic metal interfaces has been a subject of much scrutiny because of both fundamental physics and the promise for technological applications. While ferrimagnetic and, more recently, antiferromagnetic systems have been extensively investigated, a theory generalizing the heat-to-spin interconversion in noncollinear magnets is still lacking. Here, we establish a general framework for thermally-driven spin transport at the interface between a noncollinear magnet and a normal metal. Modeling the interfacial coupling between localized and itinerant magnetic moments via an exchange Hamiltonian, we derive an expression for the spin current, driven by a temperature difference, for an arbitrary noncollinear magnetic order. Our theory reproduces previously obtained results for ferromagnetic and antiferromagnet systems.



قيم البحث

اقرأ أيضاً

We investigate the spin-dependent thermoelectric effects in magnetic graphene in both diffusive and ballistic regimes. Employing the Boltzmann and Landauer formalisms we calculate the spin and charge Seebeck coefficients (thermopower) in magnetic gra phene varying the spin splitting, temperature, and doping of the junction. It is found that while in normal graphene the temperature gradient drive a charge current, in the case of magnetic graphene a significant spin current is also established. In particular we show that in the undoped magnetic graphene in which different spin carriers belong to conduction and valence bands, a pure spin current is driven by the temperature gradient. In addition it is revealed that profound thermoelectric effects can be achieved at intermediate easily accessible temperatures when the thermal energy is comparable with Fermi energy $k_BTlesssim mu$. By further investigation of the spin-dependent Seebeck effect and a significantly large figure of merit for spin thermopower $mathcal{Z}_{rm sp}T$, we suggest magnetic graphene as a promising material for spin-caloritronics studies and applications.
The longitudinal spin-Seebeck effect (SSE) in magnetic insulator$|$non-magnetic metal heterostructures has been theoretically studied primarily with the assumption of an isotropic interfacial exchange coupling. Here, we present a general theory of th e SSE in the case of an antisymmetric Dzyaloshinskii-Moriya interaction (DMI) at the interface, in addition to the usual Heisenberg form. We numerically evaluate the dependence of the spin current on the temperature and bulk DMI using a pyrochlore iridate as a model insulator with all-in all-out (AIAO) ground state configuration. We also compare the results of different crystalline surfaces arising from different crystalline orientations and conclude that the relative angles between the interfacial moments and Dzyaloshinskii-Moriya vectors play a significant role in the spin transfer. Our work extends the theory of the SSE by including the anisotropic nature of the interfacial Dzyaloshinskii-Moriya exchange interaction in magnetic insulator$|$non-magnetic metal heterostructures and can suggest possible materials to optimize the interfacial spin transfer in spintronic devices.
We report time-resolved magneto-optic Kerr effect measurements of the longitudinal spin Seebeck effect driven by an interfacial temperature difference between itinerant electrons and magnons. The measured time-evolution of spin accumulation induced b y laser-excitation indicates transfer of angular momentum across Au/Y$_3$Fe$_5$O$_{12}$ and Cu/Y$_3$Fe$_5$O$_{12}$ interfaces on a picosecond time-scale. The product of spin-mixing conductance and interfacial spin Seebeck coefficient determined is of the order of $10^8$ A m$^{-2}$ K$^{-1}$.
We theoretically propose a nonreciprocal spin Seebeck effect, i.e., nonreciprocal spin transport generated by a temperature gradient, in antiferromagnetic insulators with broken inversion symmetry. We find that nonreciprocity in antiferromagnets has rich properties not expected in ferromagnets. In particular, we show that polar antiferromagnets, in which the crystal lacks the spatial inversion symmetry, exhibit perfect nonreciprocity --- one-way spin current flow irrespective of the direction of the temperature gradient. We also show that nonpolar centrosymmetric crystals can exhibit nonreciprocity when a magnetic order breaks the inversion symmetry, and in this case, the direction of the nonreciprocal flow can be controlled by reversing the magnetic domain. As their representatives, we calculate the nonreciprocal spin Seebeck voltages for the polar antiferromagnet $alpha$-Cu$_2$V$_2$O$_7$ and the honeycomb antiferromagnet MnPS$_3$, while varying temperature and magnetic field.
146 - Jun Zhou , Biao Wang , Mengjie Li 2014
We propose a new type of the spin Seebeck effect (SSE) emerging from the Rashba spin-orbit coupling in asymmetric four-terminal electron systems. This system generates spin currents or spin voltages along the longitudinal direction parallel to the te mperature gradient in the absence of magnetic fields. The remarkable result arises from the breaking of reflection symmetry along the transverse direction. In the meantime, the SSE along the transverse direction, so-called the spin Nernst effect, with spin currents or spin voltages perpendicular to the temperature gradient can be simultaneously realized in our system. We further find that it is possible to use the temperature differences between four leads to tune the spin Seebeck coefficients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا