ﻻ يوجد ملخص باللغة العربية
We study the elliptic algebras $Q_{n,k}(E,tau)$ introduced by Feigin and Odesskii as a generalization of Sklyanin algebras. They form a family of quadratic algebras parametrized by coprime integers $n>kgeq 1$, an elliptic curve $E$, and a point $tauin E$. We consider and compare several different definitions of the algebras and provide proofs of various statements about them made by Feigin and Odesskii. For example, we show that $Q_{n,k}(E,0)$, and $Q_{n,n-1}(E,tau)$ are polynomial rings on $n$ variables. We also show that $Q_{n,k}(E,tau+zeta)$ is a twist of $Q_{n,k}(E,tau)$ when $zeta$ is an $n$-torsion point. This paper is the first of several we are writing about the algebras $Q_{n,k}(E,tau)$.
The algebras $Q_{n,k}(E,tau)$ introduced by Feigin and Odesskii as generalizations of the 4-dimensional Sklyanin algebras form a family of quadratic algebras parametrized by coprime integers $n>kge 1$, a complex elliptic curve $E$, and a point $tauin
This paper examines an algebraic variety that controls an important part of the structure and representation theory of the algebra $Q_{n,k}(E,tau)$ introduced by Feigin and Odesskii. The $Q_{n,k}(E,tau)$s are a family of quadratic algebras depending
Fix a pair of relatively prime integers $n>kge 1$, and a point $(eta , | , tau) in mathbb{C} times mathbb{H}$, where $mathbb{H}$ denotes the upper-half complex plane, and let ${{a ; ,b} choose {c , ; d}} in mathrm{SL}(2,mathbb{Z})$. We show that Feig
The elliptic algebras in the title are connected graded $mathbb{C}$-algebras, denoted $Q_{n,k}(E,tau)$, depending on a pair of relatively prime integers $n>kge 1$, an elliptic curve $E$, and a point $tauin E$. This paper examines a canonical homomorp
We prove that multiplicative preprojective algebras, defined by Crawley-Boevey and Shaw, are 2-Calabi-Yau algebras, in the case of quivers containing unoriented cycles. If the quiver is not itself a cycle, we show that the center is trivial, and henc