ترغب بنشر مسار تعليمي؟ اضغط هنا

Slip length dependent propulsion speed of catalytic colloidal swimmers near walls

118   0   0.0 ( 0 )
 نشر من قبل Daniela Kraft
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Catalytic colloidal swimmers that propel due to self-generated fluid flows exhibit strong affinity for surfaces. We here report experimental measurements of significantly different velocities of such microswimmers in the vicinity of substrates made from different materials. We find that velocities scale with the solution contact angle $theta$ on the substrate, which in turn relates to the associated hydrodynamic substrate slip length, as $Vpropto(costheta+1)^{-3/2}$. We show that such dependence can be attributed to osmotic coupling between swimmers and substrate. Our work points out that hydrodynamic slip at the wall, though often unconsidered, can significantly impact the self-propulsion of catalytic swimmers.

قيم البحث

اقرأ أيضاً

230 - E. Del Gado , W. Kob 2005
We use molecular dynamics computer simulations to investigate the relaxation dynamics of a simple model for a colloidal gel at a low volume fraction. We find that due to the presence of the open spanning network this dynamics shows at low temperature a non-trivial dependence on the wave-vector which is very different from the one observed in dense glass-forming liquids. At high wave vectors the relaxation is due to the fast cooperative motion of the branches of the gel network, whereas at low wave vectors the overall rearrangements of the heterogeneous structure produce the relaxation process.
The effect of added salt on the propulsion of Janus platinum-polystyrene colloids in hydrogen peroxide solution is studied experimentally. It is found that micromolar quantities of potassium and silver nitrate salts reduce the swimming velocity by si milar amounts, while leading to significantly different effects on the overall rate of catalytic breakdown of hydrogen peroxide. It is argued that the seemingly paradoxical experimental observations could be theoretically explained by using a generalised reaction scheme that involves charged intermediates and has the topology of two nested loops.
We study the flow of concentrated hard-sphere colloidal suspensions along smooth, non-stick walls using cone-plate rheometry and simultaneous confocal microscopy. In the glass regime, the global flow shows a transition from Herschel-Bulkley behavior at large shear rate to a characteristic Bingham slip response at small rates, absent for ergodic colloidal fluids. Imaging reveals both the `solid microstructure during full slip and the local nature of the `slip to shear transition. Both the local and global flow are described by a phenomenological model, and the associated Bingham slip parameters exhibit characteristic scaling with size and concentration of the hard spheres.
The motion of an artificial micro-scale swimmer that uses a chemical reaction catalyzed on its own surface to achieve autonomous propulsion is fully characterized experimentally. It is shown that at short times, it has a substantial component of dire cted motion, with a velocity that depends on the concentration of fuel molecules. At longer times, the motion reverts to a random walk with a substantially enhanced diffusion coefficient. Our results suggest strategies for designing artificial chemotactic systems.
Complex fluids containing low concentrations of slender colloidal rods can display a high viscosity, while little flow is needed to thin the fluid. This feature makes slender rods essential constituents in industrial applications and biology. Though this behaviour strongly depends on the rod-length, so far no direct relation could be identified. We employ a library of filamentous viruses to study the effect of rod size and flexibility on the zero-shear viscosity and shear-thinning behaviour. Rheology and small angle neutron scattering data are compared to a revised version of the standard theory for ideally stiff rods, which incorporates a complete shear-induced dilation of the confinement. While the earlier predicted length-independent pre-factor of the restricted rotational diffusion coefficient is confirmed by varying the length and concentration of the rods, the revised theory correctly predicts the shear thinning behaviour as well as the underlying orientational order. These results can be directly applied to understand the manifold systems based on rod-like colloids and design new materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا