ترغب بنشر مسار تعليمي؟ اضغط هنا

Switching behaviour of stilbene molecular device: a first-principles study

44   0   0.0 ( 0 )
 نشر من قبل Prof. Chandiramouli R.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The switching behaviour of stilbene molecular system (SMS) device is investigated with the help of non-equilibrium Greens function (NEGF) approach using first principles calculation. The transmission spectrum of cis-isomers confirmed that more electrons are transferred across the SMS-device using optical excitation by the spin of C$=$C bond by torsion angle $(theta=180^circ)$. The current-voltage characteristics show the lower magnitude of current for trans-stilbene and higher magnitude of current for cis-stilbene for an externally applied bias voltage. The outcome of the proposed work suggests that cis and trans-stilbene molecular device can be used as a switch.



قيم البحث

اقرأ أيضاً

We use density functional theory to study the structural, magnetic and electronic structure of the organo-metallic quantum magnet $mathrm{NiCl_2-4SC(NH_2)_2}$ (DTN). Recent work has demonstrated the quasi-1D nature of the molecular crystal and its qu antum phase transitions at low temperatures. This includes a magneto-electric coupling and, when doped with Br, the presence of an exotic Bose-glass state. We systematically show that, by using the generalized gradient approximation (GGA) with inclusion of a van der Waals term to account for weak inter-molecular forces and by introducing a Hubbard $U$ term to the total energy, our calculations reproduce the magnetic anisotropy, the inter-molecular exchange coupling strength and the magneto-electric effect in DTN, which were observed in previous experiments. Further analysis into the electronic structure gives insight into the underlying magnetic interactions, including what mechanisms may be causing the ME effect. Using this computationally efficient model, we predict what effect applying an electric field might have on the magnetic properties of this quantum magnet.
The electronic property of NiFe$_2$O$_4$ nanowire device is investigated through nonequilibrium Greens functions (NEGF) in combination with density functional theory (DFT). The electronic transport properties of NiFe$_2$O$_4$ nanowire are studied in terms of density of states, transmission spectrum and $I{-}V$ characteristics. The density of states gets modified with the applied bias voltage across NiFe$_2$O$_4$ nanowire device, the density of charge is observed both in the valence band and in the conduction band on increasing the bias voltage. The transmission spectrum of NiFe$_2$O$_4$ nanowire device gives the insights on the transition of electrons at different energy intervals. The findings of the present work suggest that NiFe$_2$O$_4$ nanowire device can be used as negative differential resistance (NDR) device and its NDR property can be tuned with the bias voltage, which may be used in microwave device, memory devices and in fast switching devices.
A first-principles approach based on Density Functional Theory and Non-Equilibrium Greens functions is used to study the molecular transport system consisting of benzenedithiolate connected with monoatomic gold and platinum electrodes. Using symmetry arguments we explain why the conductance mechanism is different for gold and platinum electrodes. We present the charge stability diagram for the benzenedithiolate connected with monoatomic platinum electrodes including many-body effects in terms of an extended Hubbard Hamiltonian and discuss how the electrodes and the many-body effects influence the transport properties of the system.
143 - Dino Novko 2020
Exploring low-loss two-dimensional plasmon modes is considered central for achieving light manipulation at the nanoscale and applications in plasmonic science and technology. In this context, pump-probe spectroscopy is a powerful tool for investigati ng these collective modes and the corresponding energy transfer processes. Here, I present a first-principles study on non-equilibrium Dirac plasmon in graphene, wherein damping channels under ultrafast conditions are still not fully explored. The laser-induced blueshift of plasmon energy is explained in terms of thermal increase of the electron-hole pair concentration in the intraband channel. Interestingly, while damping pathways of the equilibrium graphene plasmon are entirely ruled by scatterings with acoustic phonons, the photoinduced plasmon predominantly transfers its energy to the strongly coupled hot optical phonons, which explains the experimentally-observed tenfold increase of the plasmon linewidth. The present study paves the way for an in-depth theoretical comprehension of plasmon temporal dynamics in novel two-dimensional systems and heterostructures.
The transition metal carbides (namely MXenes) and their functionalized derivatives exhibit various physical and chemical characteristics and offer many potential applications in electronic devices and sensors. Using density functional theory (DFT), i t is revealed that the nearly free electron (NFE) states are near the Fermi levels in hydroxyl (OH) functionalized MXenes. Most of the OH-terminated MXene are metallic, but some of them, e.g. Sc2C(OH)2, are semiconductors and the NFE states are conduction bands. In this paper, to investigate the NFE states in MXenes, an attractive image-potential well model is adopted. Compared the solutions of this model with the DFT calculations, it is found that due to the overlap of spatially extensive wave functions of NFE states and their hybridization between the artificial neighboring layers imposed by the periodical boundary conditions (PBCs), the DFT results represent the properties of multiple layers, intrinsically. Based on the DFT calculations, it is found that the energy gap widths are affected by the interlayer distances. We address that the energetics of the NFE states can be modulated by the external electric fields and it is possible to convert semiconducting MXenes into metals. This band-gap manipulation makes the OH-terminated semiconducting MXenes an excellent candidate for electronic switch applications. Finally, using a set of electron transport calculations, I-V characteristics of Sc2C(OH)2 devices are investigated with the gate voltages.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا