ترغب بنشر مسار تعليمي؟ اضغط هنا

The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream

117   0   0.0 ( 0 )
 نشر من قبل Denis Erkal
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a companion paper by Koposov et al., RR Lyrae from textit{Gaia} Data Release 2 are used to demonstrate that stars in the Orphan stream have velocity vectors significantly misaligned with the stream track, suggesting that it has received a large gravitational perturbation from a satellite of the Milky Way. We argue that such a mismatch cannot arise due to any realistic static Milky Way potential and then explore the perturbative effects of the Large Magellanic Cloud (LMC). We find that the LMC can produce precisely the observed motion-track mismatch and we therefore use the Orphan stream to measure the mass of the Cloud. We simultaneously fit the Milky Way and LMC potentials and infer that a total LMC mass of $1.38^{+0.27}_{-0.24} times10^{11},rm{M_odot}$ is required to bend the Orphan Stream, showing for the first time that the LMC has a large and measurable effect on structures orbiting the Milky Way. This has far-reaching consequences for any technique which assumes that tracers are orbiting a static Milky Way. Furthermore, we measure the Milky Way mass within 50 kpc to be $3.80^{+0.14}_{-0.11}times10^{11} M_odot$. Finally, we use these results to predict that, due to the reflex motion of the Milky Way in response to the LMC, the outskirts of the Milky Ways stellar halo should exhibit a bulk, upwards motion.

قيم البحث

اقرأ أيضاً

This paper explores the effect of the LMC on the mass estimates obtained from the timing argument. We show that accounting for the presence of the LMC systematically lowers the Local Group mass ($M_{rm LG}$) derived from the relative motion of the Mi lky Way--Andromeda pair. Motivated by this result we apply a Bayesian technique devised by Pe~narrubia et al. (2014) to simultaneously fit (i) distances and velocities of galaxies within 3~Mpc and (ii) the relative motion between the Milky Way and Andromeda derived from HST observations, with the LMC mass ($M_{rm LMC}$) as a free parameter. Our analysis returns a Local Group mass $M_{rm LG}=2.64^{+0.42}_{-0.38}times 10^{12}M_odot$ at a 68% confidence level. The masses of the Milky Way, $M_{rm MW}=1.04_{-0.23}^{+0.26}times 10^{12}M_odot$, and Andromeda, $M_{rm M31}=1.33_{-0.33}^{+0.39}times 10^{12}M_odot$, are consistent with previous estimates that neglect the impact of the LMC on the observed Hubble flow. We find a (total) LMC mass $M_{rm LMC}=0.25_{-0.08}^{+0.09}times 10^{12}M_odot$, which is indicative of an extended dark matter halo and supports the scenario where this galaxy is just past its first pericentric approach. Consequently, these results suggest that the LMC may induce significant perturbations on the Galactic potential.
We present a model for the formation of the Magellanic Stream (MS) due to ram pressure stripping. We model the history of the Small and Large Magellanic Clouds in the recent cosmological past in a static Milky Way potential with diffuse halo gas, usi ng observationally motivated orbits for the Magellanic Clouds derived from HST proper motions within the potential of the Milky Way. This model is able to reproduce the trailing arm but does not reproduce the leading arm feature, which is common for models of the stream formation that include ram pressure stripping effects. Our model produces a good match to observations (including the densities and line-of-sight velocities of the stream, as well as the positions and velocities of the satellites at present day) when we include a diffuse halo component for the Milky Way. From analyzing our grid of models, we find that there is a direct correlation between the observed stream length in our simulations and the mass of the Milky Way. For the observed MS length, the inferred Milky Way mass is $1.5 pm 0.3 times 10^{12}$ $M_odot$, which agrees closely with other independent measures of the Milky Way mass. We also discuss the MS in the context of HI streams in galaxy clusters, and find that the MS lies on the low-mass end of a continuum from Hickson groups to the Virgo cluster. As a tracer of the dynamical mass in the outer halo, the MS is a particularly valuable probe of the Milky Ways potential.
We present the properties of an extensive sample of molecular clouds in the Large Magellanic Cloud (LMC) mapped at 11 pc resolution in the CO(1-0) line. We identify clouds as regions of connected CO emission, and find that the distributions of cloud sizes, fluxes and masses are sensitive to the choice of decomposition parameters. In all cases, however, the luminosity function of CO clouds is steeper than dN/dL propto L^{-2}, suggesting that a substantial fraction of mass is in low-mass clouds. A correlation between size and linewidth, while apparent for the largest emission structures, breaks down when those structures are decomposed into smaller structures. We argue that the correlation between virial mass and CO luminosity is the result of comparing two covariant quantities, with the correlation appearing tighter on larger scales where a size-linewidth relation holds. The virial parameter (the ratio of a clouds kinetic to self-gravitational energy) shows a wide range of values and exhibits no clear trends with the CO luminosity or the likelihood of hosting young stellar object (YSO) candidates, casting further doubt on the assumption of virialization for molecular clouds in the LMC. Higher CO luminosity increases the likelihood of a cloud harboring a YSO candidate, and more luminous YSOs are more likely to be coincident with detectable CO emission, confirming the close link between giant molecular clouds and massive star formation.
The Magellanic Stream and the Leading Arm form a massive, filamentary system of gas clouds surrounding the Large and Small Magellanic Clouds. Here we present a new component-level analysis of their ultraviolet (UV) kinematic properties using a sample of 31 sightlines through the Magellanic System observed with the Hubble Space Telescope/Cosmic Origins Spectrograph. Using Voigt profile fits to UV metal-line absorption, we quantify the kinematic differences between the low-ion (Si II and C II), intermediate-ion (Si III), and high-ion (Si IV and C IV) absorption lines and compare the kinematics between the Stream and Leading Arm. We find that the Stream shows generally simple, single-phase kinematics, with statistically indistinguishable b-value distributions for the low-, intermediate-, and high-ion components, all dominated by narrow (b<25 km/s) components that are well aligned in velocity. In contrast, we find tentative evidence that the Leading Arm shows complex, multi-phase kinematics, with broader high ions than low ions. These results suggest that the Stream is photoionized up to C IV by a hard ionizing radiation field. This can be naturally explained by the Seyfert-flare model of Bland-Hawthorn et al. (2013, 2019), in which a burst of ionizing radiation from the Galactic Center photoionized the Stream as it passed below the south Galactic pole. The Seyfert flare is the only known source of radiation that is both powerful enough to explain the H-alpha intensity of the Stream and hard enough to photoionize Si IV and C IV to the observed levels. The flares timescale of a few Myr suggests it is the same event that created the giant X-ray/gamma-ray Fermi Bubbles at the Galactic Center.
Dynamic interactions between the two Magellanic Clouds have flung large quantities of gas into the halo of the Milky Way, creating the Magellanic Stream, the Magellanic Bridge, and the Leading Arm (collectively referred to as the Magellanic System). In this third paper of a series studying the Magellanic gas in absorption, we analyze the gas ionization level using a sample of 69 Hubble Space Telescope/Cosmic Origins Spectrograph sightlines that pass through or within 30 degrees of the 21 cm-emitting regions. We find that 81% (56/69) of the sightlines show UV absorption at Magellanic velocities, indicating that the total cross section of the Magellanic System is ~11 000 square degrees, or around a quarter of the entire sky. Using observations of the Si III/Si II ratio together with Cloudy photoionization modeling, we calculate that the total mass (atomic plus ionized) of the Magellanic System is ~2.0 billion solar masses, with the ionized gas contributing over twice as much mass as the atomic gas. This is larger than the current-day interstellar H I mass of both Magellanic Clouds combined, indicating that they have lost most of their initial gas mass. If the gas in the Magellanic System survives to reach the Galactic disk over its inflow time of ~0.5-1.5 Gyr, it will represent an average inflow rate of ~3.7-6.7 solar masses per year, potentially raising the Galactic star formation rate. However, multiple signs of an evaporative interaction with the hot Galactic corona indicate that the Stream may not survive its journey to the disk fully intact, and will instead add material to (and cool) the corona.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا