ﻻ يوجد ملخص باللغة العربية
We study a two-component mixture of fermionic dipoles in two dimensions at zero temperature, interacting via a purely repulsive $1/r^3$ potential. This model can be realized with ultracold atoms or molecules, when their dipole moments are aligned in the confinement direction orthogonal to the plane. We characterize the unpolarized mixture by means of the Diffusion Monte Carlo technique. Computing the equation of state, we identify the regime of validity for a mean-field theory based on a low-density expansion and compare our results with the hard-disk model of repulsive fermions. At high density, we address the possibility of itinerant ferromagnetism, namely whether the ground state can be fully polarized in the fluid phase. Within the fixed-node approximation, we show that the accuracy of Jastrow-Slater trial wave functions, even with the typical two-body backflow correction, is not sufficient to resolve the relevant energy differences. By making use of the iterative-backflow improved trial wave functions, we observe no signature of a fully-polarized ground state up to the freezing density.
Supersolid phases as a result of a coexistence of superfluid and density ordered checkerboard phases are predicted to appear in ultracold Fermi molecules confined in a bilayer array of two-dimensional square optical lattices. We demonstrate the exist
We study the quantum ground state of ultracold bosons in a two-dimensional square lattice. The bosons interact via the repulsive dipolar interactions and s-wave scattering. The dynamics is described by the extended Bose-Hubbard model including correl
The liquid-to-ordered phase transition in a bilayer system of fermions is studied within the context of a recently proposed density-functional theory [Phys. Rev. A {bf 92}, 023614 (2015)]. In each two-dimensional layer, the fermions interact via a re
We study the emergence of several magnetic phases in dipolar bosonic gases subject to three-body loss mechanism employing numerical simulations based on the density matrix renormalization group(DMRG) algorithm. After mapping the original Hamiltonian
Density-functional theory is utilized to investigate the zero-temperature transition from a Fermi liquid to an inhomogeneous stripe, or Wigner crystal phase, predicted to occur in a one-component, spin-polarized, two-dimensional dipolar Fermi gas. Co