ﻻ يوجد ملخص باللغة العربية
Gallium nitride (GaN) has emerged as an essential semiconductor material for energy-efficient lighting and electronic applications owing to its large direct bandgap of 3.4 eV. Present GaN/AlGaN heterostructures seemingly feature an inherently existing, highly-mobile 2-dimensional electron gas (2DEG), which results in normally-on transistor characteristics. Here we report on an ultra-pure GaN/AlGaN layer stack grown by molecular beam epitaxy, in which such a 2DEG is absent at 300 K in the dark, a property previously not demonstrated. Illumination with ultra-violet light however, generates a 2DEG at the GaN/AlGaN interface and the heterostructure becomes electrically conductive. At temperatures below 150 K this photo-conductivity is persistent with an insignificant dependence of the 2D channel density on the optical excitation power. Residual donor impurity concentrations below 10$^{17}$ cm$^{-3}$ in the GaN/AlGaN layer stack are one necessity for our observations. Fabricated transistors manifest that these characteristics enable a future generation of normally-off as well as light-sensitive GaN-based device concepts.
This paper assesses intersubband transitions in the 1 to 10 THz frequency range in nonpolar m-plane GaN/AlGaN multi-quantum-wells deposited on free-standing semi-insulating GaN substrates. The quantum wells were designed to contain two confined elect
We have theoretically studied exciton states and photoluminescence spectra of strained wurtzite AlGaN/GaN quantum-well heterostructures. The electron and hole energy spectra are obtained by numerically solving the Schrodinger equation, both for a sin
In spintronic devices, the two main approaches to actively control the electrons spin degree of freedom involve either static magnetic or electric fields. An alternative avenue relies on the application of optical fields to generate spin currents, wh
Using high magnetic fields up to 60 T, we report magneto-transport and photoluminescence (PL) studies of a two-dimensional electron gas (2DEG) in a GaN/AlGaN heterojunction grown by molecular-beam epitaxy. Transport measurements demonstrate that the
The magneto-gyrotropic photogalvanic and spin-galvanic effects are observed in (0001)-oriented GaN/AlGaN heterojunctions excited by terahertz radiation. We show that free-carrier absorption of linearly or circularly polarized terahertz radiation in l