ﻻ يوجد ملخص باللغة العربية
The presence of non-trivial magnetic topology can give rise to non-vanishing scalar spin chirality and consequently a topological Hall or Nernst effect. In turn, topological transport signals can serve as indicators for topological spin structures. This is particularly important in thin films or nanopatterned materials where the spin structure is not readily accessible. Conventionally, the topological response is determined by combining magnetotransport data with an independent magnetometry experiment. This approach is prone to introduce measurement artifacts. In this study, we report the observation of large topological Hall and Nernst effects in micropatterned thin films of Mn$_{1.8}$PtSn below the spin reorientation temperature $T_mathrm{SR} approx 190$K. The magnitude of the topological Hall effect $rho_mathrm{xy}^mathrm{T} = 8$ n$Omega$m is close to the value reported in bulk Mn$_2$PtSn, and the topological Nernst effect $S_mathrm{xy}^mathrm{T} = 115$ nV K$^{-1}$ measured in the same microstructure has a similar magnitude as reported for bulk MnGe ($S_mathrm{xy}^mathrm{T} sim 150$ nV K$^{-1}$), the only other material where a topological Nernst was reported. We use our data as a model system to introduce a topological quantity, which allows to detect the presence of topological transport effects without the need for independent magnetometry data. Our approach thus enables the study of topological transport also in nano-patterned materials without detrimental magnetization related limitations.
Angular momentum transport is one of the cornerstones of spintronics. Spin angular momentum is not only transported by mobile charge carriers, but also by the quantized excitations of the magnetic lattice in magnetically ordered systems. In this rega
We report on electrical measurements of the effective density of states in the ferromagnetic semiconductor material (Ga,Mn)As. By analyzing the conductivity correction due to enhanced electron-electron interaction the electrical diffusion constant wa
Semiconductors in the proximity of superconductors have been proposed to support phases hosting Majorana bound states. When the systems undergo a topological phase transition towards the Majorana phase, the spectral gap closes, then reopens, and the
Using a generalized wave matching method we solve the full scattering problem for quantum spin Hall insulator (QSHI) - superconductor (SC) - QSHI junctions. We find that for systems narrow enough so that the bulk states in the SC part couple both edg
Temperature dependent transport measurements on ultrathin antiferromagnetic Mn films reveal a heretofore unknown non-universal weak localization correction to the conductivity which extends to disorder strengths greater than 100 k$Omega$ per square.