ترغب بنشر مسار تعليمي؟ اضغط هنا

Sticky Brownian Rounding and its Applications to Constraint Satisfaction Problems

158   0   0.0 ( 0 )
 نشر من قبل Sepehr Abbasi-Zadeh
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Semidefinite programming is a powerful tool in the design and analysis of approximation algorithms for combinatorial optimization problems. In particular, the random hyperplane rounding method of Goemans and Williamson has been extensively studied for more than two decades, resulting in various extensions to the original technique and beautiful algorithms for a wide range of applications. Despite the fact that this approach yields tight approximation guarantees for some problems, e.g., Max-Cut, for many others, e.g., Max-SAT and Max-DiCut, the tight approximation ratio is still unknown. One of the main reasons for this is the fact that very few techniques for rounding semidefinite relaxations are known. In this work, we present a new general and simple method for rounding semi-definite programs, based on Brownian motion. Our approach is inspired by recent results in algorithmic discrepancy theory. We develop and present tools for analyzing our new rounding algorithms, utilizing mathematical machinery from the theory of Brownian motion, complex analysis, and partial differential equations. Focusing on constraint satisfaction problems, we apply our method to several classical problems, including Max-Cut, Max-2SAT, and MaxDiCut, and derive new algorithms that are competitive with the best known results. To illustrate the versatility and general applicability of our approach, we give new approximation algorithms for the Max-Cut problem with side constraints that crucially utilizes measure concentration results for the Sticky Brownian Motion, a feature missing from hyperplane rounding and its generalizations



قيم البحث

اقرأ أيضاً

For a finite relational structure A, let CSP(A) denote the CSP instances whose constraint relations are taken from A. The resulting family of problems CSP(A) has been considered heavily in a variety of computational contexts. In this article, we cons ider this family from the perspective of property testing: given an instance of a CSP and query access to an assignment, one wants to decide whether the assignment satisfies the instance, or is far from so doing. While previous works on this scenario studied concrete templates or restricted classes of structures, this article presents comprehensive classification theorems. Our first contribution is a dichotomy theorem completely characterizing the structures A such that CSP(A) is constant-query testable: (i) If A has a majority polymorphism and a Maltsev polymorphism, then CSP(A) is constant-query testable with one-sided error. (ii) Else, testing CSP(A) requires a super-constant number of queries. Let $exists$CSP(A) denote the extension of CSP(A) to instances which may include existentially quantified variables. Our second contribution is to classify all structures A in terms of the number of queries needed to test assignments to instances of $exists$CSP(A), with one-sided error. More specifically, we show the following trichotomy: (i) If A has a majority polymorphism and a Maltsev polymorphism, then $exists$CSP(A) is constant-query testable with one-sided error. (ii) Else, if A has a $(k + 1)$-ary near-unanimity polymorphism for some $k geq 2$, and no Maltsev polymorphism then $exists$CSP(A) is not constant-query testable (even with two-sided error) but is sublinear-query testable with one-sided error. (iii) Else, testing $exists$CSP(A) with one-sided error requires a linear number of queries.
We consider the problem of approximately solving constraint satisfaction problems with arity $k > 2$ ($k$-CSPs) on instances satisfying certain expansion properties, when viewed as hypergraphs. Random instances of $k$-CSPs, which are also highly expa nding, are well-known to be hard to approximate using known algorithmic techniques (and are widely believed to be hard to approximate in polynomial time). However, we show that this is not necessarily the case for instances where the hypergraph is a high-dimensional expander. We consider the spectral definition of high-dimensional expansion used by Dinur and Kaufman [FOCS 2017] to construct certain primitives related to PCPs. They measure the expansion in terms of a parameter $gamma$ which is the analogue of the second singular value for expanding graphs. Extending the results by Barak, Raghavendra and Steurer [FOCS 2011] for 2-CSPs, we show that if an instance of MAX k-CSP over alphabet $[q]$ is a high-dimensional expander with parameter $gamma$, then it is possible to approximate the maximum fraction of satisfiable constraints up to an additive error $epsilon$ using $q^{O(k)} cdot (k/epsilon)^{O(1)}$ levels of the sum-of-squares SDP hierarchy, provided $gamma leq epsilon^{O(1)} cdot (1/(kq))^{O(k)}$. Based on our analysis, we also suggest a notion of threshold-rank for hypergraphs, which can be used to extend the results for approximating 2-CSPs on low threshold-rank graphs. We show that if an instance of MAX k-CSP has threshold rank $r$ for a threshold $tau = (epsilon/k)^{O(1)} cdot (1/q)^{O(k)}$, then it is possible to approximately solve the instance up to additive error $epsilon$, using $r cdot q^{O(k)} cdot (k/epsilon)^{O(1)}$ levels of the sum-of-squares hierarchy. As in the case of graphs, high-dimensional expanders (with sufficiently small $gamma$) have threshold rank 1 according to our definition.
We introduce and study the random locked constraint satisfaction problems. When increasing the density of constraints, they display a broad clustered phase in which the space of solutions is divided into many isolated points. While the phase diagram can be found easily, these problems, in their clustered phase, are extremely hard from the algorithmic point of view: the best known algorithms all fail to find solutions. We thus propose new benchmarks of really hard optimization problems and provide insight into the origin of their typical hardness.
We study the problem of sampling an approximately uniformly random satisfying assignment for atomic constraint satisfaction problems i.e. where each constraint is violated by only one assignment to its variables. Let $p$ denote the maximum probabilit y of violation of any constraint and let $Delta$ denote the maximum degree of the line graph of the constraints. Our main result is a nearly-linear (in the number of variables) time algorithm for this problem, which is valid in a Lovasz local lemma type regime that is considerably less restrictive compared to previous works. In particular, we provide sampling algorithms for the uniform distribution on: (1) $q$-colorings of $k$-uniform hypergraphs with $Delta lesssim q^{(k-4)/3 + o_{q}(1)}.$ The exponent $1/3$ improves the previously best-known $1/7$ in the case $q, Delta = O(1)$ [Jain, Pham, Vuong; arXiv, 2020] and $1/9$ in the general case [Feng, He, Yin; STOC 2021]. (2) Satisfying assignments of Boolean $k$-CNF formulas with $Delta lesssim 2^{k/5.741}.$ The constant $5.741$ in the exponent improves the previously best-known $7$ in the case $k = O(1)$ [Jain, Pham, Vuong; arXiv, 2020] and $13$ in the general case [Feng, He, Yin; STOC 2021]. (3) Satisfying assignments of general atomic constraint satisfaction problems with $pcdot Delta^{7.043} lesssim 1.$ The constant $7.043$ improves upon the previously best-known constant of $350$ [Feng, He, Yin; STOC 2021]. At the heart of our analysis is a novel information-percolation type argument for showing the rapid mixing of the Glauber dynamics for a carefully constructed projection of the uniform distribution on satisfying assignments. Notably, there is no natural partial order on the space, and we believe that the techniques developed for the analysis may be of independent interest.
Sticky Brownian motion is the simplest example of a diffusion process that can spend finite time both in the interior of a domain and on its boundary. It arises in various applications such as in biology, materials science, and finance. This article spotlights the unusual behavior of sticky Brownian motions from the perspective of applied mathematics, and provides tools to efficiently simulate them. We show that a sticky Brownian motion arises naturally for a particle diffusing on $mathbb{R}_+$ with a strong, short-ranged potential energy near the origin. This is a limit that accurately models mesoscale particles, those with diameters $approx 100$nm-$10mu$m, which form the building blocks for many common materials. We introduce a simple and intuitive sticky random walk to simulate sticky Brownian motion, that also gives insight into its unusual properties. In parameter regimes of practical interest, we show this sticky random walk is two to five orders of magnitude faster than alternative methods to simulate a sticky Brownian motion. We outline possible steps to extend this method towards simulating multi-dimensional sticky diffusions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا