ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum gas microscopy of Rydberg macrodimers

103   0   0.0 ( 0 )
 نشر من قبل Simon Hollerith
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A microscopic understanding of molecules is essential for many fields of natural sciences but their tiny size hinders direct optical access to their constituents. Rydberg macrodimers - bound states of two highly-excited Rydberg atoms - feature bond lengths easily exceeding optical wavelengths. Here we report on the direct microscopic observation and detailed characterization of such macrodimers in a gas of ultracold atoms in an optical lattice. The size of about 0.7 micrometers, comparable to the size of small bacteria, matches the diagonal distance of the lattice. By exciting pairs in the initial two-dimensional atom array, we resolve more than 50 vibrational resonances. Using our spatially resolved detection, we observe the macrodimers by correlated atom loss and demonstrate control of the molecular alignment by the choice of the vibrational state. Our results allow for precision testing of Rydberg interaction potentials and establish quantum gas microscopy as a powerful new tool for quantum chemistry.



قيم البحث

اقرأ أيضاً

Precise control and study of molecules is challenging due to the variety of internal degrees of freedom and local coordinates that are typically not controlled in an experiment. Employing quantum gas microscopy to position and resolve the atoms in Ry dberg macrodimer states solves almost all of these challenges and enables unique access to the molecular frame. Here, we demonstrate the power of this approach and present first photoassociation studies for different molecular symmetries in which the molecular orientation relative to an applied magnetic field, the polarization of the excitation light and the initial atomic state are fully controlled. The observed characteristic dependencies allow for an electronic structure tomography of the molecular state. We additionally observe an orientation-dependent Zeeman shift and reveal a significant influence on it caused by the hyperfine interaction of the macrodimer state. Finally, we demonstrate controlled engineering of the electrostatic binding potential by opening a gap in the energetic vicinity of two crossing pair potentials.
We present a quantum many-body description of the excitation spectrum of Rydberg polarons in a Bose gas. The many-body Hamiltonian is solved with functional determinant theory, and we extend this technique to describe Rydberg polarons of finite mass. Mean-field and classical descriptions of the spectrum are derived as approximations of the many-body theory. The various approaches are applied to experimental observations of polarons created by excitation of Rydberg atoms in a strontium Bose-Einstein condensate.
How do isolated quantum systems approach an equilibrium state? We experimentally and theoretically address this question for a prototypical spin system formed by ultracold atoms prepared in two Rydberg states with different orbital angular momenta. B y coupling these states with a resonant microwave driving we realize a dipolar XY spin-1/2 model in an external field. Starting from a spin-polarized state we suddenly switch on the external field and monitor the subsequent many-body dynamics. Our key observation is density dependent relaxation of the total magnetization much faster than typical decoherence rates. To determine the processes governing this relaxation we employ different theoretical approaches which treat quantum effects on initial conditions and dynamical laws separately. This allows us to identify an intrinsically quantum component to the relaxation attributed to primordial quantum fluctuations.
163 - Peter Schauss 2017
Finite-range interacting spin models are the simplest models to study the effect of beyond nearest-neighbour interactions and access new effects caused by the range of the interactions. Recent experiments have reached the regime of dominant interacti ons in Ising quantum magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising Hamiltonian with $1/r^6$ interactions in a transverse and longitudinal field. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. The strong correlations in this quantum Ising model have been observed in several experiments up to the point of crystallization. In systems with a diameter small compared to the Rydberg blockade radius, the number of excitations is maximally one in the so-called superatom regime.
Interaction between Rydberg atoms can significantly modify Rydberg excitation dynamics. Under a resonant driving field the Rydberg-Rydberg interaction in high-lying states can induce shifts in the atomic resonance such that a secondary Rydberg excita tion becomes unlikely leading to the Rydberg blockade effect. In a related effect, off-resonant coupling of light to Rydberg states of atoms contributes to the Rydberg anti-blockade effect where the Rydberg interaction creates a resonant condition that promotes a secondary excitation in a Rydberg atomic gas. Here, we study the light-matter interaction and dynamics of off-resonant two-photon excitations and include two- and three-atom Rydberg interactions and their effect on excited state dynamics in an ensemble of cold atoms. In an experimentally-motivated regime, we find the optimal physical parameters such as Rabi frequencies, two-photon detuning, and pump duration to achieve significant enhancement in the probability of generating doubly-excited collective atomic states. This results in large auto-correlation values due to the Rydberg anti-blockade effect and makes this system a potential candidate for a high-purity two-photon Fock state source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا