ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical detection of single electron transport dynamics

68   0   0.0 ( 0 )
 نشر من قبل Annika Kurzmann
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The unpredictability of a single quantum event lies at the very core of quantum mechanics. Physical information is therefore drawn from a statistical evaluation of many such processes. Nevertheless, recording each single quantum event in a time trace the random telegraph signal is of great value, as it allows insight into the underlying physical system. Here, quantum dots have proven to be well suited systems, as they exhibit both single photon emission and single electron charge transport. While single photon emission is generally studied on self-assembled quantum dots, single electron transport studies are focused on gate-defined structures. We investigate, on a single self-assembled quantum dot, the single electron transport in the optical telegraph signal with high bandwidth and observe in the full counting statistics the interplay between charge and spin dynamics in a noninvasive way. In particular, we are able to identify the spin relaxation of the Zeeman-split quantum-dot level in the charge statistics.

قيم البحث

اقرأ أيضاً

Using a first principles approach, we study the electron transport properties of a new class of molecular wires containing fluorenone units, whose features open up new possibilities for controlling transport through a single molecule. We show that th e presence of side groups attached to these units leads to Fano resonances close to the Fermi energy. As a consequence electron transport through the molecule can be controlled either by chemically modifying the side group, or by changing the conformation of the side group. This sensitivity, opens up new possibilities for novel single-molecule sensors. We also show that transport can be controlled by tilting a molecule with respect to the electrode surfaces. Our results compare favorably with recent experiments.
We demonstrate real-time detection of self-interfering electrons in a double quantum dot embedded in an Aharonov-Bohm interferometer, with visibility approaching unity. We use a quantum point contact as a charge detector to perform time-resolved meas urements of single-electron tunneling. With increased bias voltage, the quantum point contact exerts a back-action on the interferometer leading to decoherence. We attribute this to emission of radiation from the quantum point contact, which drives non-coherent electronic transitions in the quantum dots.
Single-electron pumps based on isolated impurity atoms have recently been experimentally demonstrated. In these devices the Coulomb potential of an atom creates a localised electron state with a large charging energy and considerable orbital level sp acings, enabling robust charge capturing processes. In these single-atom pumps, the confinement potential is hardly affected by the periodic driving of the system. This is in contrast to the often used gate-defined quantum dot pumps, for which a strongly time-dependent potential leads to significantly different charge pumping processes. Here we describe the behaviour and the performance of an atomic, single parameter, electron pump. This is done by considering the loading, isolating and unloading of one electron at the time, on a phosphorous atom embedded in a silicon double gate transistor. The most important feature of the atom pump is its very isolated ground state, which can be populated through the fast loading of much higher lying excited states and a subsequent fast relaxation proces. This leads to a substantial increase in pumping accuracy, and is opposed to the adverse role of excited states as observed for quantum dot pumps due to non-adiabatic excitations. The pumping performances are investigated as a function of dopant position, revealing a pumping behaviour robust against the expected variability in atomic position.
61 - Kuei-Lin Chiu , Yang Xu 2016
Two-dimensional (2D) materials for their versatile band structures and strictly 2D nature have attracted considerable attention over the past decade. Graphene is a robust material for spintronics owing to its weak spin-orbit and hyperfine interaction s, while monolayer transition metal dichalcogenides (TMDs) possess a Zeeman effect-like band splitting in which the spin and valley degrees of freedom are nondegenerate. The surface states of topological insulators (TIs) exhibit a spin-momentum locking that opens up the possibility of controlling the spin degree of freedom in the absence of an external magnetic field. Nanostructures made of these materials are also viable for use in quantum computing applications involving the superposition and entanglement of individual charge and spin quanta. In this article, we review a selection of transport studies addressing the confinement and manipulation of charges in nanostructures fabricated from various 2D materials. We supply the entry-level knowledge for this field by first introducing the fundamental properties of 2D bulk materials followed by the theoretical background relevant to the physics of nanostructures. Subsequently, a historical review of experimental development in this field is presented, from the early demonstration of graphene nanodevices on SiO2 substrate to more recent progress in utilizing hexagonal boron nitride to reduce substrate disorder. In the second part of this article, we extend our discussion to TMDs and TI nanostructures. We aim to outline the current challenges and suggest how future work will be geared towards developing spin qubits in 2D materials.
Electronic transport properties for single-molecule junctions have been widely measured by several techniques, including mechanically controllable break junctions, electromigration break junctions or by means of scanning tunneling microscopes. In par allel, many theoretical tools have been developed and refined for describing such transport properties and for obtaining numerical predictions. Most prominent among these theoretical tools are those based upon density functional theory. In this review, theory and experiment are critically compared and this confrontation leads to several important conclusions. The theoretically predicted trends nowadays reproduce the experimental findings quite well for series of molecules with a single well-defined control parameter, such as the length of the molecules. The quantitative agreement between theory and experiment usually is less convincing, however. Many reasons for quantitative discrepancies can be identified, from which one may decide that qualitative agreement is the best one may expect with present modeling tools. For further progress, benchmark systems are required that are sufficiently well-defined by experiment to allow quantitative testing of the approximation schemes underlying the theoretical modeling. Several key experiments can be identified suggesting that the present description may even be qualitatively incomplete in some cases. Such key experimental observations and their current models are also discussed here, leading to several suggestions for extensions of the models towards including dynamic image charges, electron correlations, and polaron formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا