ترغب بنشر مسار تعليمي؟ اضغط هنا

The Sunyaev-Zeldovich effect of simulated jet-inflated bubbles in clusters

64   0   0.0 ( 0 )
 نشر من قبل Kristian Ehlert
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kristian Ehlert




اسأل ChatGPT حول البحث

Feedback by active galactic nuclei (AGNs) is essential for regulating the fast radiative cooling of low-entropy gas at the centers of galaxy clusters and for reducing star formation rates of central ellipticals. The details of self-regulation depend critically on the unknown contents of AGN-inflated bubbles. Observations of the Sunyaev-Zeldovich (SZ) signal of AGN bubbles provide us with the ability to directly measure the lobe electron pressure given a bubble morphology. Here we compute the SZ signal of jet-inflated bubbles in three-dimensional magnetohydrodynamical simulations of the galaxy cluster MS0735.6+7421 with the Arepo code, and compare our synthetic SZ results to inferences obtained with popular modelling approaches. We find that cutting out ellipsoidal bubbles from a double-beta pressure profile only matches the inner bubble edges in the simulations and fails to account for the emission of the shock-enhanced pressure cocoon outside the bubbles. This additional contribution significantly worsens the accuracy of the cut-out method for jets with small inclinations with respect to the line of sight. Also, the kinetic SZ effect of the bubbles, a previously neglected contribution, becomes relevant at these smaller inclinations due to entrainment and mixing of the intracluster medium with low-density jet material. Fortunately, the different signs of the kinetic SZ signal in opposite lobes allow modelling this effect. We present an approximate method to determine the jet inclination, which combines jet power and lifetime estimates, the stand-off distance between jet head and bow shock, and the kinetic SZ effect, thereby helping to correctly infer the bubble contents.



قيم البحث

اقرأ أيضاً

We report the direct detection of the kinetic Sunyaev-Zeldovich (kSZ) effect in galaxy clusters with a 3.5 sigma significance level. The measurement was performed by stacking the Planck map at 217 GHz at the positions of galaxy clusters from the Wen- Han-Liu (WHL) catalog. To avoid the cancelation of positive and negative kSZ signals, we used the large-scale distribution of the Sloan Digital Sky Survey (SDSS) galaxies to estimate the peculiar velocities of the galaxy clusters along the line of sight and incorporated the sign in the velocity-weighted stacking of the kSZ signals. Using this technique, we were able to measure the kSZ signal around galaxy clusters beyond 3R500. Assuming a standard beta-model, we also found that the gas fraction within R500 is fgas,500 = 0.12 +- 0.04 for the clusters with the mass of M500 ~ 1e14 Msun/h. We compared this result to predictions from the Magneticum cosmological hydrodynamic simulations as well as other kSZ and X-ray measurements, most of which show a lower gas fraction than the universal baryon fraction for the same mass of clusters. Our value is statistically consistent with results from the measurements and simulations and also with the universal value within our measurement uncertainty.
The kinetic Sunyaev Zeldovich (kSZ) effect, cosmic microwave background (CMB) anisotropies induced by scattering from free electrons in bulk motion, is a primary target of future CMB experiments. Measurements of the kSZ effect have the potential to a ddress fundamental questions about the structure and evolution of our Universe on the largest scales and at the earliest times. This potential is unlocked by combining measurements of small-scale CMB anisotropies with large-scale structure surveys, a technique known as kSZ tomography. Previous work established a quadratic estimator for the remote dipole field, the CMB dipole observed at different locations in the Universe. This previous work did not include gravitational lensing, redshift space distortions, or non-linear evolution of structure. In this paper, we investigate how well the remote dipole field can be reconstructed in the presence of such effects by using mock data from a suite of simulations. To properly model both large and small scales, we develop a novel box-in-box simulation pipeline, where small-scale information is obtained from N-body simulations, and large-scale information obtained by evolving fields using linear theory and adding the resulting corrections to the N-body particle data. This pipeline allows us to create properly correlated maps of the primary CMB including lensing, as well as the kSZ effect and density maps on the past light cone of an observer. Analyzing an ensemble of mocks, we find that the dipole field can be reconstructed with high fidelity over a range of angular scales and redshift bins, although there is evidence of excess power from nonlinear structure. We also analyze correlations with the primary CMB, investigating the ability of kSZ tomography to reconstruct the intrinsic CMB dipole. Our results constitute a proof-of-principle that kSZ tomography is a promising technique for future datasets.
370 - D. Puy , L. Grenacher 2000
In this paper we investigate the Sunyaev-Zeldovich (SZ) effect and the X-ray surface brightness for clusters of galaxies with a non-spherical mass distribution. In particular, we consider the influence of the shape and the finite extension of a clust er as well as of a polytropic thermal profile on the Compton parameter, the X-ray surface brightness and on the determination of the Hubble constant. We find that the the non-inclusion of such effects can induce errors up to 30 per cent in the various parameters and in particular on the Hubble constant value, when compared with results obtained under the isothermal, infinitely extended and spherical shape assumptions.
Observations of the X-ray band wavelength reveal an evident ellipticity of many galaxy clusters atmospheres. The modeling of the intracluster gas with an ellipsoidal $beta$-model leads to different estimates for the total gravitational mass and the g as mass fraction of the cluster than those one finds for a spherical beta-model. An analysis of a recent Chandra image of the galaxy cluster RBS797 indicates a strong ellipticity and thus a pronounced aspherical geometry. A preliminary investigation which takes into account an ellipsoidal shape for this cluster gives different mass estimates than by assuming spherical symmetry. We have also investigated the influence of aspherical geometries of galaxy clusters, and of polytropic profiles of the temperature on the estimate of the Hubble constant through the Sunyaev-Zeldovich effect. We find that the non-inclusion of such effects can induce errors up to 40 per cent on the Hubble constant value.
We investigate the influence of the finite extension and the aspherical geometry of a galaxy cluster on the estimate of the Hubble constant through the Sunyaev-Zeldovich effect. An analysis of a recent CHANDRA image of the galaxy cluster RBS797 indic ates a strong ellipticity and thus a pronounced aspherical geometry. We estimate the total mass of RBS797 assuming spherical or ellipsoidal geometry and show that in the latter case the mass is about 10-17 % less than the one inferred for a spherical shape.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا