ترغب بنشر مسار تعليمي؟ اضغط هنا

Supersymmetric QCD: Renormalization and Mixing of Composite Operators

83   0   0.0 ( 0 )
 نشر من قبل Marios Costa
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study $4$-dimensional SQCD with gauge group $SU(N_c)$ and $N_f$ flavors of chiral super-multiplets on the lattice. We perform extensive calculations of matrix elements and renormalization factors of composite operators in Perturbation Theory. In particular, we compute the renormalization factors of quark and squark bilinears, as well as their mixing at the quantum level with gluino and gluon bilinear operators. From these results we construct correctly renormalized composite operators, which are free of mixing effects and may be employed in non-perturbative studies of Supersymmetry. All our calculations have been performed with massive matter fields, in order to regulate the infrared singularities which are inherent in renormalizing squark bilinears. Furthermore, the quark and squark propagators are computed in momentum space with nonzero masses. This work is a feasibility study for lattice computations relevant to a number of observables, such as spectra and distribution functions of hadrons, but in the context of supersymmetric QCD, as a forerunner to lattice investigations of SUSY extensions of the Standard Model.

قيم البحث

اقرأ أيضاً

We study 4-dimensional SQCD with gauge group SU(Nc) and Nf flavors of chiral supermultiplets on the lattice. We perform extensive calculations of matrix elements and renormalization factors of composite operators in Perturbation Theory. In particular , we compute the renormalization factors of quark and squark bilinears, as well as their mixing at the quantum level with gluino and gluon bilinear operators. From these results we construct correctly renormalized composite operators, which are free of mixing effects and may be employed in non-perturbative studies of Supersymmetry. All our calculations have been performed with massive matter fields, in order to regulate the infrared singularities which are inherent in renormalizing squark bilinears. Furthermore, the quark and squark propagators are computed in momentum space with nonzero masses. This work is a feasibility study for lattice computations relevant to a number of observables, such as spectra and distribution functions of hadrons, but in the context of supersymmetric QCD, as a forerunner to lattice investigations of SUSY extensions of the Standard Model.
We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric ${cal N}{=}1$ QCD (SQCD). We study the self-energies of all particles w hich appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Greens functions using both dimensional and lattice regularizations. Our lattice formulation involves the Wilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is $SU(N_c)$, while the number of colors, $N_c$, the number of flavors, $N_f$, and the gauge parameter, $alpha$, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant ($Z_g$) and of the quark ($Z_psi$), gluon ($Z_u$), gluino ($Z_lambda$), squark ($Z_{A_pm}$), and ghost ($Z_c$) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
We study the off-shell mixing and renormalization of flavor-diagonal dimension-5 T- and P-odd operators involving quarks, gluons, and photons, including quark electric dipole and chromo-electric dipole operators. We present the renormalization matrix to one-loop in the $bar{rm MS}$ scheme. We also provide a definition of the quark chromo-electric dipole operator in a regularization-independent momentum-subtraction scheme suitable for non-perturbative lattice calculations and present the matching coefficients with the $bar{rm MS}$ scheme to one-loop in perturbation theory, using both the naive dimensional regularization and t Hooft-Veltman prescriptions for $gamma_5$.
In this paper, we present one- and two-loop results for the renormalization of the gluon and quark gauge-invariant operators which appear in the definition of the QCD energy-momentum tensor, in dimensional regularization. To this end, we consider a v ariety of Greens functions with different incoming momenta. We identify the set of twist-2 symmetric traceless and flavor singlet operators which mix among themselves and we calculate the corresponding mixing coefficients for the nondiagonal components. We also provide results for some appropriate regularization-independent (RI)-like schemes, which address this mixing, and we discuss their application to nonperturbative studies via lattice simulations. Finally, we extract the one- and two-loop expressions of the conversion factors between the proposed RI and the MSbar schemes. From our results regarding the MSbar-renormalized Greens functions, one can easily derive conversion factors relating numerous variants of RI-like schemes to MSbar. To make our results easily accessible, we also provide them as Supplemental Material, in the form of a Mathematica input file and, also, an equivalent text file.
Quark bilinear operators with staple-shaped Wilson lines are used to study transverse-momentum-dependent parton distribution functions (TMDPDFs) from lattice quantum chromodynamics (QCD). Here, the renormalization factors for the isovector operators, including all mixings between operators with different Dirac structures, are computed nonperturbatively in the regularization-independent momentum subtraction scheme for the first time. This study is undertaken in quenched QCD with three different lattice spacings. With Wilson flow applied to the gauge fields in the calculations, the operator mixing pattern due to chiral symmetry breaking with the lattice regularization is found to be significantly different from that predicted by one-loop lattice perturbation theory calculations. These results constitute a critical step towards the systematic extraction of TMDPDFs from lattice QCD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا