ﻻ يوجد ملخص باللغة العربية
We obtain an exact formula for the first-passage time probability distribution for random walks on complex networks using inverse Laplace transform. We write the formula as the summation of finitely many terms with different frequencies corresponding to the poles of Laplace transformed function and separate the short-term and long-term behavior of the first-passage process. We give a formula of the decay rate $beta$, which is inversely proportional to the characteristic relaxation time $tau$ of the target node. This exact formula for the first-passage probability between two nodes at a given time can be approximately solved in the mean field approximation by estimation of the characteristic relaxation time $tau$. Our theoretical results compare well with numerical simulation on artificial as well as real networks.
We perform an in-depth study for mean first-passage time (MFPT)---a primary quantity for random walks with numerous applications---of maximal-entropy random walks (MERW) performed in complex networks. For MERW in a general network, we derive an expli
We present a general framework, applicable to a broad class of random walks on complex networks, which provides a rigorous lower bound for the mean first-passage time of a random walker to a target site averaged over its starting position, the so-cal
We present an analytical method for computing the mean cover time of a random walk process on arbitrary, complex networks. The cover time is defined as the time a random walker requires to visit every node in the network at least once. This quantity
Random walk on discrete lattice models is important to understand various types of transport processes. The extreme events, defined as exceedences of the flux of walkers above a prescribed threshold, have been studied recently in the context of compl
We present the analysis of the first passage time problem on a finite interval for the generalized Wiener process that is driven by Levy stable noises. The complexity of the first passage time statistics (mean first passage time, cumulative first pas