ترغب بنشر مسار تعليمي؟ اضغط هنا

IceCube Flavor Ratios with Identified Astrophysical Sources: Towards Improving New Physics Testability

68   0   0.0 ( 0 )
 نشر من قبل Vedran Brdar
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the discovery of the first high-energy astrophysical neutrino source, the blazar TXS 0506+056, we revisit the IceCube flavor ratio analysis. Assuming large statistics from identified blazars, collected in the forthcoming years by the IceCube detector and its successor IceCube-Gen2, we demonstrate that the constraints on several new physics scenarios in which the baseline dependent terms in neutrino oscillation probabilities are not averaged, can be improved. As a representative case, we consider pseudo-Dirac neutrinos while neutrino decay is also discussed.

قيم البحث

اقرأ أيضاً

The flavor composition of astrophysical neutrinos observed in neutrino telescopes is a powerful discriminator between different astrophysical neutrino production mechanisms and can also teach us about the particle physics properties of neutrinos. In this paper, we investigate how the possible existence of light sterile neutrinos can affect these flavor ratios. We consider two scenarios: (i) neutrino production in conventional astrophysical sources, followed by partial oscillation into sterile states; (ii) neutrinos from dark matter decay with a primary flavor composition enhanced in tau neutrinos or sterile neutrinos. Throughout the paper, we constrain the sterile neutrino mixing parameters from a full global fit to short and long baseline data. We present our results in the form of flavor triangles and, for scenario (ii), as exclusion limits on the dark matter mass and lifetime, derived from a fit to IceCube high energy starting events and through-going muons. We argue that identifying a possible flux of neutrinos from dark matter decay may require analyzing the flavor composition as a function of neutrino energy.
Astrophysical high-energy neutrinos observed by IceCube are sensitive to small effects in a vacuum such as those motivated from quantum gravity theories. Here, we discuss the potential sensitivity of Lorentz violation from the diffuse astrophysical n eutrino data in IceCube. The estimated sensitivity reaches the Planck scale physics motivated region, providing IceCube with real discovery potential of Lorentz violation.
The IceCube Collaboration has observed a high-energy astrophysical neutrino flux and recently found evidence for neutrino emission from the blazar TXS 0506+056. These results open a new window into the high-energy universe. However, the source or sou rces of most of the observed flux of astrophysical neutrinos remains uncertain. Here, a search for steady point-like neutrino sources is performed using an unbinned likelihood analysis. The method searches for a spatial accumulation of muon-neutrino events using the very high-statistics sample of about $497,000$ neutrinos recorded by IceCube between 2009 and 2017. The median angular resolution is $sim1^circ$ at 1 TeV and improves to $sim0.3^circ$ for neutrinos with an energy of 1 PeV. Compared to previous analyses, this search is optimized for point-like neutrino emission with the same flux-characteristics as the observed astrophysical muon-neutrino flux and introduces an improved event-reconstruction and parametrization of the background. The result is an improvement in sensitivity to the muon-neutrino flux compared to the previous analysis of $sim35%$ assuming an $E^{-2}$ spectrum. The sensitivity on the muon-neutrino flux is at a level of $E^2 mathrm{d} N /mathrm{d} E = 3cdot 10^{-13},mathrm{TeV},mathrm{cm}^{-2},mathrm{s}^{-1}$. No new evidence for neutrino sources is found in a full sky scan and in an a priori candidate source list that is motivated by gamma-ray observations. Furthermore, no significant excesses above background are found from populations of sub-threshold sources. The implications of the non-observation for potential source classes are discussed.
281 - Nicole F. Bell 2008
We review the prospects for probing new physics with neutrino astrophysics. High energy neutrinos provide an important means of accessing physics beyond the electroweak scale. Neutrinos have a number of advantages over conventional astronomy and, in particular, carry information encoded in their flavor degree of freedom which could reveal a variety of exotic neutrino properties. We also outline ways in which neutrino astrophysics can be used to constrain dark matter properties, and explain how neutrino-based limits lead to a strong general bound on the dark matter total annihilation cross-section.
We discuss flavor-mixing probabilities and flavor ratios of high energy astrophysical neutrinos. In the first part of this paper, we expand the neutrino flavor-fluxes in terms of the small parameters U_{e3} and pi/4 - theta_{23}, and show that there are universal first and second order corrections. The second order term can exceed the first order term, and so should be included in any analytic study. We also investigate the probabilities and ratios after a further expansion around the tribimaximal value of sin^2 theta_{12} = 1/3. In the second part of the paper, we discuss implications of deviations of initial flavor ratios from the usually assumed, idealized flavor compositions for pion, muon-damped, and neutron beam sources, viz., (1 : 2 : 0), (0 : 1 : 0), and (1 : 0 : 0), respectively. We show that even small deviations have significant consequences for the observed flavor ratios at Earth. If initial flavor deviations are not taken into account in analyses, then false inferences for the values in the PMNS matrix elements (angles and phase) may result.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا