ترغب بنشر مسار تعليمي؟ اضغط هنا

The Spitzer-HETDEX Exploratory Large Area Survey II: Dark Energy Camera and Spitzer/IRAC Multiwavelength Catalog

95   0   0.0 ( 0 )
 نشر من قبل Isak Wold
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the $ugriz$-band Dark Energy Camera (DECam) plus 3.6 and 4.5 $mu$m IRAC catalogs for the Spitzer/HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers $sim24$ deg$^{2}$ of the Sloan Digital Sky Survey (SDSS) Stripe 82 region, with seven bandpasses spanning a wavelength range of 0.35 to 4.5 $mu$m. SHELA falls within the footprint of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), which will provide spectroscopic redshifts for $sim200{,}000$ Ly$alpha$ emitters at $1.9<z<3.5$ and also for $sim200{,}000$ [OII] emitters at $z<0.5$. SHELAs deep, wide-area multiwavelength images combined with HETDEXs spectroscopic information, will facilitate many extragalactic studies, including measuring the evolution of galaxy stellar mass, halo mass, and environment from $1.5<z<3.5$. Here we present $riz$-band selected $ugriz$-band DECam catalogs that reach a $5sigma$ depth of $sim24.5$ AB mag (for point sources with an aperture that encloses $70%$ of the total flux) and cover $17.5$ deg$^{2}$ of the overall SHELA field. We validate our DECam catalog by comparison to the DECam Legacy Survey (DECaLS) DR5 and the Dark Energy Survey (DES) DR1. We perform IRAC forced photometry with The Tractor image modeling code to measure 3.6 and 4.5 $mu$m fluxes for all objects within our DECam catalog. We demonstrate the utility of our catalog by computing galaxy number counts and estimating photometric redshifts. Our photometric redshifts recover the available $leftlangle z rightrangle = 0.33 $ SDSS spectroscopic redshifts with a $1sigma$ scatter in $Delta z/(1 +z)$ of 0.04.

قيم البحث

اقرأ أيضاً

107 - Casey Papovich 2016
We present post-cryogenic Spitzer imaging at 3.6 and 4.5 micron with the Infrared Array Camera (IRAC) of the Spitzer/HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers $sim$deg$^2$ of the Sloan Digital Sky Survey Stripe 82 region, and falls w ithin the footprints of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Dark Energy Survey. The HETDEX blind R $sim$ 800 spectroscopy will produce $sim$ 200,000 redshifts from the Lyman-$alpha$ emission for galaxies in the range 1.9 < z < 3.5, and an additional $sim$200,000 redshifts from the [OII] emission for galaxies at z < 0.5. When combined with deep ugriz images from the Dark Energy Camera, K-band images from NEWFIRM, and other ancillary data, the IRAC photometry from Spitzer will enable a broad range of scientific studies of the relationship between structure formation, galaxy stellar mass, halo mass, AGN, and environment over a co-moving volume of $sim$0.5 Gpc$^3$ at 1.9 < z < 3.5. Here, we discuss the properties of the SHELA IRAC dataset, including the data acquisition, reduction, validation, and source catalogs. Our tests show the images and catalogs are 80% (50%) complete to limiting magnitudes of 22.0 (22.6) AB mag in the detection image, which is constructed from the weighted sum of the IRAC 3.6 and 4.5 micron images. The catalogs reach limiting sensitivities of 1.1 $mu$Jy at both 3.6 and 4.5 micron (1$sigma$, for R=2 arcsec circular apertures). As a demonstration of science, we present IRAC number counts, examples of highly temporally variable sources, and galaxy surface density profiles of rich galaxy clusters. In the spirit of Spitzer Exploratory programs we provide all images and catalogs as part of the publication.
We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of 115 deg^2 in the Equatorial SDSS Stripe 82 field using Spitzer during its warm mission phase. SpIES was designed to probe sufficient volume to perform measurements of quasar clustering and the luminosity function at z > 3 to test various models for feedback from active galactic nuclei (AGN). Additionally, the wide range of available multi-wavelength, multi-epoch ancillary data enables SpIES to identify both high-redshift (z > 5) quasars as well as obscured quasars missed by optical surveys. SpIES achieves 5{sigma} depths of 6.13 {mu}Jy (21.93 AB magnitude) and 5.75 {mu}Jy (22.0 AB magnitude) at 3.6 and 4.5 microns, respectively - depths significantly fainter than WISE. We show that the SpIES survey recovers a much larger fraction of spectroscopically-confirmed quasars (98%) in Stripe 82 than are recovered by WISE (55%). This depth is especially powerful at high-redshift (z > 3.5), where SpIES recovers 94% of confirmed quasars, whereas WISE only recovers 25%. Here we define the SpIES survey parameters and describe the image processing, source extraction, and catalog production methods used to analyze the SpIES data. In addition to this survey paper, we release 234 images created by the SpIES team and three detection catalogs: a 3.6 {mu}m-only detection catalog containing 6.1 million sources, a 4.5 {mu}m-only detection catalog containing 6.5 million sources, and a dual-band detection catalog containing 5.4 million sources.
118 - Michael A. Kuhn 2020
We present ~120,000 Spitzer/IRAC candidate young stellar objects (YSOs) based on surveys of the Galactic midplane between l~255 deg and 110 deg, including the GLIMPSE I, II, and 3D, Vela-Carina, Cygnus X, and SMOG surveys (613 square degrees), augmen ted by near-infrared catalogs. We employed a classification scheme that uses the flexibility of a tailored statistical learning method and curated YSO datasets to take full advantage of IRACs spatial resolution and sensitivity in the mid-infrared ~3-9 micron range. Multi-wavelength color/magnitude distributions provide intuition about how the classifier separates YSOs from other red IRAC sources and validate that the sample is consistent with expectations for disk/envelope-bearing pre-main-sequence stars. We also identify areas of IRAC color space associated with objects with strong silicate absorption or polycyclic aromatic hydrocarbon emission. Spatial distributions and variability properties help corroborate the youthful nature of our sample. Most of the candidates are in regions with mid-IR nebulosity, associated with star-forming clouds, but others appear distributed in the field. Using Gaia DR2 distance estimates, we find groups of YSO candidates associated with the Local Arm, the Sagittarius-Carina Arm, and the Scutum-Centaurus Arm. Candidate YSOs visible to the Zwicky Transient Facility tend to exhibit higher variability amplitudes than randomly selected field stars of the same magnitude, with many high-amplitude variables having light-curve morphologies characteristic of YSOs. Given that no current or planned instruments will significantly exceed IRACs spatial resolution while possessing its wide-area mapping capabilities, Spitzer-based catalogs such as ours will remain the main resources for mid-infrared YSOs in the Galactic midplane for the near future.
We present IRAC (3.6, 4.5, 5.8, and 8.0 micron) observations of the Chamaeleon II molecular cloud. The observed area covers about 1 square degree defined by $A_V >2$. Analysis of the data in the 2005 c2d catalogs reveals a small number of sources (40 ) with properties similar to those of young stellaror substellar objects (YSOs). The surface density of these YSO candidates is low, and contamination by background galaxies appears to be substantial, especially for sources classified as Class I or flat SED. We discuss this problem in some detail and conclude that very few of the candidate YSOs in early evolutionary stages are actually in the Cha II cloud. Using a refined set of criteria, we define a smaller, but more reliable, set of 24 YSO candidates.
100 - Jason M. Kirk 2009
We present Spitzer IRAC (~2 deg^2) and MIPS (~8 deg^2) observations of the Cepheus Flare which is associated with the Gould Belt, at an approximate distance of ~300 pc. Around 6500 sources are detected in all four IRAC bands, of which ~900 have MIPS 24 micron detections. We identify 133 YSO candidates using color-magnitude diagram techniques, a large number of the YSO candidates are associated with the NGC 7023 reflection nebula. Cross identifications were made with the Guide Star Catalog II and the IRAS Faint Source Catalog, and spectral energy distributions (SED) were constructed. SED modeling was conducted to estimate the degree of infrared excess. It was found that a large majority of disks were optically thick accreting disks, suggesting that there has been little disk evolution in these sources. Nearest-neighbor clustering analysis identified four small protostellar groups (L1228, L1228N, L1251A, and L1251B) with 5-15 members each and the larger NGC 7023 association with 32 YSO members. The star formation efficiency for cores with clusters of protostars and for those without clusters was found to be ~8% and ~1% respectively. The cores L1155, L1241, and L1247 are confirmed to be starless down to our luminosity limit of L_bol=0.06 L_sol.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا