ﻻ يوجد ملخص باللغة العربية
In this article, we study the ergodicity of the geodesic flows on surfaces with no focal points. Let $M$ be a smooth connected and closed surface equipped with a $C^infty$ Riemannian metric $g$, whose genus $mathfrak{g} geq 2$. Suppose that $(M,g)$ has no focal points. We prove that the geodesic flow on the unit tangent bundle of $M$ is ergodic with respect to the Liouville measure, under the assumption that the set of points on $M$ with negative curvature has at most finitely many connected components.
In this article, we consider a closed rank one Riemannian manifold $M$ without focal points. Let $P(t)$ be the set of free-homotopy classes containing a closed geodesic on $M$ with length at most $t$, and $# P(t)$ its cardinality. We obtain the follo
The problem of the existence of an additional (independent on the energy) first integral, of a geodesic (or magnetic geodesic) flow, which is polynomial in momenta is studied. The relation of this problem to the existence of nontrivial solutions of s
Let $Q$ be a closed manifold admitting a locally-free action of a compact Lie group $G$. In this paper we study the properties of geodesic flows on $Q$ given by Riemannian metrics which are invariant by such an action. In particular, we will be inter
In this paper we study rigidity aspects of Zoll magnetic systems on closed surfaces. We characterize magnetic systems on surfaces of positive genus given by constant curvature metrics and constant magnetic functions as the only magnetic systems such
The lengths of geodesics on hyperbolic surfaces satisfy intriguing equations, known as identities, relating these lengths to geometric quantities of the surface. This paper is about a large family of identities that relate lengths of closed geodesics