ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Sparse Factor Analysis

178   0   0.0 ( 0 )
 نشر من قبل Kenichiro McAlinn
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Its conceptual appeal and effectiveness has made latent factor modeling an indispensable tool for multivariate analysis. Despite its popularity across many fields, there are outstanding methodological challenges that have hampered practical deployments. One major challenge is the selection of the number of factors, which is exacerbated for dynamic factor models, where factors can disappear, emerge, and/or reoccur over time. Existing tools that assume a fixed number of factors may provide a misguided representation of the data mechanism, especially when the number of factors is crudely misspecified. Another challenge is the interpretability of the factor structure, which is often regarded as an unattainable objective due to the lack of identifiability. Motivated by a topical macroeconomic application, we develop a flexible Bayesian method for dynamic factor analysis (DFA) that can simultaneously accommodate a time-varying number of factors and enhance interpretability without strict identifiability constraints. To this end, we turn to dynamic sparsity by employing Dynamic Spike-and-Slab (DSS) priors within DFA. Scalable Bayesian EM estimation is proposed for fast posterior mode identification via rotations to sparsity, enabling Bayesian data analysis at scales that would have been previously time-consuming. We study a large-scale balanced panel of macroeconomic variables covering multiple facets of the US economy, with a focus on the Great Recession, to highlight the efficacy and usefulness of our proposed method.



قيم البحث

اقرأ أيضاً

We propose a novel approach to estimating the precision matrix of multivariate Gaussian data that relies on decomposing them into a low-rank and a diagonal component. Such decompositions are very popular for modeling large covariance matrices as they admit a latent factor based representation that allows easy inference. The same is not true for precision matrices, due to the lack of computationally convenient representation, which restricts the use to low to moderate dimensional problems. We address this remarkable gap in the literature by introducing a novel latent variable representation for such decomposition for precision matrices as well. The construction leads to an efficient Gibbs sampler that scales very well to high-dimensional problems far beyond the limits of the current state-of-the-art. The ability to efficiently explore the full posterior space allows the model uncertainty to be easily assessed. The decomposition also crucially allows us to adapt sparsity inducing priors to shrink the insignificant entries of the precision matrix toward zero, making the approach adaptable to high-dimensional small-sample-size sparse settings. Exact zeros in the matrix encoding the underlying conditional independence graph are then determined via a novel posterior false discovery rate control procedure. We evaluate the methods empirical performance through synthetic experiments and illustrate its practical utility in data sets from two different application domains.
This paper investigates the high-dimensional linear regression with highly correlated covariates. In this setup, the traditional sparsity assumption on the regression coefficients often fails to hold, and consequently many model selection procedures do not work. To address this challenge, we model the variations of covariates by a factor structure. Specifically, strong correlations among covariates are explained by common factors and the remaining variations are interpreted as idiosyncratic components of each covariate. This leads to a factor-adjusted regression model with both common factors and idiosyncratic components as covariates. We generalize the traditional sparsity assumption accordingly and assume that all common factors but only a small number of idiosyncratic components contribute to the response. A Bayesian procedure with a spike-and-slab prior is then proposed for parameter estimation and model selection. Simulation studies show that our Bayesian method outperforms its lasso analogue, manifests insensitivity to the overestimates of the number of common factors, pays a negligible price in the no correlation case, and scales up well with increasing sample size, dimensionality and sparsity. Numerical results on a real dataset of U.S. bond risk premia and macroeconomic indicators lend strong support to our methodology.
105 - Jaejoon Lee , Jaeyong Lee 2020
Most of previous works and applications of Bayesian factor model have assumed the normal likelihood regardless of its validity. We propose a Bayesian factor model for heavy-tailed high-dimensional data based on multivariate Student-$t$ likelihood to obtain better covariance estimation. We use multiplicative gamma process shrinkage prior and factor number adaptation scheme proposed in Bhattacharya & Dunson [Biometrika (2011) 291-306]. Since a naive Gibbs sampler for the proposed model suffers from slow mixing, we propose a Markov Chain Monte Carlo algorithm where fast mixing of Hamiltonian Monte Carlo is exploited for some parameters in proposed model. Simulation results illustrate the gain in performance of covariance estimation for heavy-tailed high-dimensional data. We also provide a theoretical result that the posterior of the proposed model is weakly consistent under reasonable conditions. We conclude the paper with the application of proposed factor model on breast cancer metastasis prediction given DNA signature data of cancer cell.
Sparse Principal Component Analysis (SPCA) is widely used in data processing and dimension reduction; it uses the lasso to produce modified principal components with sparse loadings for better interpretability. However, sparse PCA never considers an additional grouping structure where the loadings share similar coefficients (i.e., feature grouping), besides a special group with all coefficients being zero (i.e., feature selection). In this paper, we propose a novel method called Feature Grouping and Sparse Principal Component Analysis (FGSPCA) which allows the loadings to belong to disjoint homogeneous groups, with sparsity as a special case. The proposed FGSPCA is a subspace learning method designed to simultaneously perform grouping pursuit and feature selection, by imposing a non-convex regularization with naturally adjustable sparsity and grouping effect. To solve the resulting non-convex optimization problem, we propose an alternating algorithm that incorporates the difference-of-convex programming, augmented Lagrange and coordinate descent methods. Additionally, the experimental results on real data sets show that the proposed FGSPCA benefits from the grouping effect compared with methods without grouping effect.
119 - Carter T. Butts 2019
Many social and other networks exhibit stable size scaling relationships, such that features such as mean degree or reciprocation rates change slowly or are approximately constant as the number of vertices increases. Statistical network models built on top of simple Bernoulli baseline (or reference) measures often behave unrealistically in this respect, leading to the development of sparse reference models that preserve features such as mean degree scaling. In this paper, we generalize recent work on the micro-foundations of such reference models to the case of sparse directed graphs with non-vanishing reciprocity, providing a dynamic process interpretation of the emergence of stable macroscopic behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا