ﻻ يوجد ملخص باللغة العربية
In studying the 11/8-Conjecture on the Geography Problem in 4-dimensional topology, Furuta proposed a question on the existence of Pin(2)-equivariant stable maps between certain representation spheres. In this paper, we present a complete solution to this problem by analyzing the Pin(2)-equivariant Mahowald invariants. As a geometric application of our result, we prove a 10/8+4-Theorem. We prove our theorem by analyzing maps between certain finite spectra arising from BPin(2) and various Thom spectra associated with it. To analyze these maps, we use the technique of cell diagrams, known results on the stable homotopy groups of spheres, and the $j$-based Atiyah-Hirzebruch spectral sequence.
Using Seiberg-Witten Floer spectrum and Pin(2)-equivariant KO-theory, we prove new Furuta-type inequalities on the intersection forms of spin cobordisms between homology $3$-spheres. As an application, we give explicit constrains on the intersection
We demonstrate how by using the intersection theory to calculate the cohomology of $G_2$-manifolds constructed by using the generalized Kummer construction. For one example we find the generators of the rational cohomology ring and describe the product structure.
We generalize the Mahowald invariant to the $mathbb{R}$-motivic and $C_2$-equivariant settings. For all $i>0$ with $i equiv 2,3 mod 4$, we show that the $mathbb{R}$-motivic Mahowald invariant of $(2+rho eta)^i in pi_{0,0}^{mathbb{R}}(S^{0,0})$ contai
We analyze two different fibrations of a link complement M constructed by McMullen-Taubes, and studied further by Vidussi. These examples lead to inequivalent symplectic forms on a 4-manifold X = S x M, which can be distinguished by the dimension of
We prove that the 2-primary $pi_{61}$ is zero. As a consequence, the Kervaire invariant element $theta_5$ is contained in the strictly defined 4-fold Toda bracket $langle 2, theta_4, theta_4, 2rangle$. Our result has a geometric corollary: the 61-s