ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the halo occupation of AGN using dark-matter cosmological simulations

113   0   0.0 ( 0 )
 نشر من قبل Antonis Georgakakis
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A semi-empirical model is presented that describes the distribution of Active Galactic Nuclei (AGN) on the cosmic web. It populates dark-matter halos in N-body simulations (MultiDark) with galaxy stellar masses using empirical relations based on abundance matching techniques, and then paints accretion events on these galaxies using state-of-the-art measurements of the AGN occupation of galaxies. The explicit assumption is that the large-scale distribution of AGN is independent of the physics of black-hole fueling. The model is shown to be consistent with current measurements of the two-point correlation function of AGN samples. It is then used to make inferences on the halo occupation of the AGN population. Mock AGN are found in halos with a broad distribution of masses with a mode of $approx 10^{12},h^{-1} , M_{odot}$ and a tail extending to cluster-size halos. The clustering properties of the model AGN depend only weakly on accretion luminosity and redshift. The fraction of satellite AGN in the model increases steeply toward more massive halos, in contrast with some recent observational results. This discrepancy, if confirmed, could point to a dependence of the halo occupation of AGN on the physics of black-hole fueling.



قيم البحث

اقرأ أيضاً

468 - Rupert Croft 2011
We use a large dark matter simulation of a LambdaCDM model to investigate the clustering and environmental dependence of the number of substructures in a halo. Focusing on redshift z=1, we find that the halo occupation distribution is sensitive at th e tens of percent level to the surrounding density and to a lesser extent to asymmetry of the surrounding density distribution. We compute the autocorrelation function of halos as a function of occupation, building on the finding of Wechsler et al. (2006) and Gao and White (2007) that halos (at fixed mass) with more substructure are more clustered. We compute the relative bias as a function of occupation number at fixed mass, finding a strong relationship. At fixed mass, halos in the top 5% of occupation can have an autocorrelation function ~ 1.5-2 times higher than the mean. We also compute the bias as a function of halo mass, for fixed halo occupation. We find that for group and cluster sized halos, when the number of subhalos is held fixed, there is a strong anticorrelation between bias and halo mass. Such a relationship represents an additional challenge to the halo model.
We introduce the Uchuu suite of large high-resolution cosmological $N$-body simulations. The largest simulation, named Uchuu, consists of 2.1 trillion ($12800^3$) dark matter particles in a box of side-length 2.0 Gpc/h, with particle mass $3.27 times 10^{8}$ Msun/h. The highest resolution simulation, Shin-Uchuu, consists of 262 billion ($6400^3$) particles in a box of side-length 140 Mpc/h, with particle mass $8.97 times 10^{5}$ Msun/h. Combining these simulations we can follow the evolution of dark matter halos and subhalos spanning those hosting dwarf galaxies to massive galaxy clusters across an unprecedented volume. In this first paper, we present basic statistics, dark matter power spectra, and the halo and subhalo mass functions, which demonstrate the wide dynamic range and superb statistics of the Uchuu suite. From an analysis of the evolution of the power spectra we conclude that our simulations remain accurate from the Baryon Acoustic Oscillation scale down to the very small. We also provide parameters of a mass-concentration model, which describes the evolution of halo concentration and reproduces our simulation data to within 5 per cent for halos with masses spanning nearly eight orders of magnitude at redshift 0<z<14. There is an upturn in the mass-concentration relation for the population of all halos and of relaxed halos at z>0.5, whereas no upturn is detected at z<0.5. We make publicly available various $N$-body products as part of Uchuu Data Release 1 on the Skies & Universes site. Future releases will include gravitational lensing maps and mock galaxy, X-ray cluster, and active galactic nuclei catalogues.
We make detailed theoretical predictions for the assembly properties of the Local Group (LG) in the standard LambdaCDM cosmological model. We use three cosmological N-body dark matter simulations from the CLUES project, which are designed to reproduc e the main dynamical features of the matter distribution down to the scale of a few Mpc around the LG. Additionally, we use the results of an unconstrained simulation with a sixty times larger volume to calibrate the influence of cosmic variance. We characterize the Mass Aggregation History (MAH) for each halo by three characteristic times, the formation, assembly and last major merger times. A major merger is defined by a minimal mass ratio of 10:1. We find that the three LGs share a similar MAH with formation and last major merger epochs placed on average approx 10 - 12 Gyr ago. Between 12% and 17% of the halos in the mass range 5 x 10^11 Msol/h < M_h < 5 x 10^12 Msol/h have a similar MAH. In a set of pairs of halos within the same mass range, a fraction of 1% to 3% share similar formation properties as both halos in the simulated LG. An unsolved question posed by our results is the dynamical origin of the MAH of the LGs. The isolation criteria commonly used to define LG-like halos in unconstrained simulations do not narrow down the halo population into a set with quiet MAHs, nor does a further constraint to reside in a low density environment. The quiet MAH of the LGs provides a favorable environment for the formation of disk galaxies like the Milky Way and M31. The timing for the beginning of the last major merger in the Milky Way dark matter halo matches with the gas rich merger origin for the thick component in the galactic disk. Our results support the view that the specific large and mid scale environment around the Local Group play a critical role in shaping its MAH and hence its baryonic structure at present.
We investigate the correlation between nine different dark matter halo properties using a rank correlation analysis and a Principal Component Analysis for a sample of haloes spanning five orders of magnitude in mass. We consider mass and dimensionles s measures of concentration, age, relaxedness, sphericity, triaxiality, substructure, spin, and environment, where the latter is defined in a way that makes it insensitive to mass. We find that concentration is the most fundamental property. Except for environment, all parameters are strongly correlated with concentration. Concentration, age, substructure, mass, sphericity and relaxedness can be considered a single family of parameters, albeit with substantial scatter. In contrast, spin, environment, and triaxiality are more independent, although spin does correlate strongly with substructure and both spin and triaxiality correlate substantially with concentration. Although mass sets the scale of a halo, all other properties are more sensitive to concentration.
Recently, the evidence for gamma-ray emission has been found in the $Fermi$-LAT observation for the outer halo of Andromeda galaxy (M31). The dark matter (DM) annihilation offers a possible explanation on the gamma-ray radiation. In this work, we foc us on the dark matter annihilation within minispikes around intermediate-mass black holes (IMBHs) with masses ranging from $100~mathrm{M_odot}$ to $10^6~mathrm{M_odot}$. When the thermal annihilation relic cross section $leftlangle sigma v rightrangle = 3 times 10^{-26}~mathrm {cm} ^{3};mathrm {s} ^{-1}$ is adopted, we conduct an investigation on the population of IMBHs in the spherical halo area of M31. We find that there could be more than 65 IMBHs with masses of $ 100~ mathrm{M_odot}$ surrounded by the DM minispikes as the remnants of Population III stars in the M31 spherical halo, and it is almost impossible for the existence of minspikes around IMBHs with masses above $10^4~ mathrm{M_odot}$ which could be formed by the collapse of primordial cold gas, for both dark matter annihilation channels $bbar{b}$ and $tau^{+}tau^{-}$. The properties of dark matter have been further explored with the simulation of these two scenarios for IMBHs formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا