ﻻ يوجد ملخص باللغة العربية
In this paper, we study static and spherically symmetric black hole (BH) solutions in the scalar-tensor theories with the coupling of the scalar field to the Gauss-Bonnet (GB) term $xi (phi) R_{rm GB}$, where $R_{rm GB}:=R^2-4R^{alphabeta}R_{alphabeta}+R^{alphabetamu u}R_{alphabetamu u}$ is the GB invariant and $xi(phi)$ is a function of the scalar field $phi$. Recently, it was shown that in these theories scalarized static and spherically symmetric BH solutions which are different from the Schwarzschild solution and possess the nontrivial profiles of the scalar field can be realized for certain choices of the coupling functions and parameters. These scalarized BH solutions are classified in terms of the number of nodes of the scalar field. It was then pointed out that in the case of the pure quadratic order coupling to the GB term, $xi(phi)=eta phi^2/8$, scalarized BH solutions with any number of nodes are unstable against the radial perturbation. In order to see how a higher order power of $phi$ in the coupling function $xi(phi)$ affects the properties of the scalarized BHs and their stability, we investigate scalarized BH solutions in the presence of the quartic order term in the GB coupling function, $xi(phi)=eta phi^2 (1+alpha phi^2)/8$. We clarify that the existence of the higher order term in the coupling function can realize scalarized BHs with zero nodes of the scalar field which are stable against the radial perturbation.
We report on a numerical investigation of the stability of scalarized black holes in Einstein dilaton Gauss-Bonnet (EdGB) gravity in the full dynamical theory, though restricted to spherical symmetry. We find evidence that for sufficiently small curv
In order to perform model-dependent tests of general relativity with gravitational wave observations, we must have access to numerical relativity binary black hole waveforms in theories beyond general relativity (GR). In this study, we focus on order
We obtain rotating black hole solutions to the novel 3D Gauss-Bonnet theory of gravity recently proposed. These solutions generalize the BTZ metric and are not of constant curvature. They possess an ergoregion and outer horizon, but do not have an in
We investigate the presence of a black hole black string phase transition in Einstein Gauss Bonnet (EGB) gravity in the large dimension limit. The merger point is the static spacetime connecting the black string phase with the black hole phase. We co
We study the instability of the charged Gauss-Bonnet de Sitter black holes under gravito-electromagnetic perturbations. We adopt two criteria to search for an instability of the scalar type perturbations, including the local instability criterion bas