ترغب بنشر مسار تعليمي؟ اضغط هنا

Large Synoptic Survey Telescope White Paper; The Case for Matching U-band on Deep Drilling Fields

138   0   0.0 ( 0 )
 نشر من قبل Benne W. Holwerda
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B.W. Holwerda




اسأل ChatGPT حول البحث

U-band observations with the LSST have yet to be fully optimized in cadence. The straw man survey design is a simple coverage of the medium-deep-fast survey. Here we argue that deep coverage of the four deep drilling fields (XMM-LSS, ECDFS, ELAIS-S1 and COSMOS) has a much higher scientific return, given that these are also the target of the Southern Hemispheres Square Kilometer Array Pathfinder, the MeerKAT specifically, deep radio observations.

قيم البحث

اقرأ أيضاً

The Large Synoptic Survey Telescope (LSST) will use an active optics system (AOS) to maintain alignment and surface figure on its three large mirrors. Corrective actions fed to the LSST AOS are determined from information derived from 4 curvature wav efront sensors located at the corners of the focal plane. Each wavefront sensor is a split detector such that the halves are 1mm on either side of focus. In this paper we describe the extensions to published curvature wavefront sensing algorithms needed to address challenges presented by the LSST, namely the large central obscuration, the fast f/1.23 beam, off-axis pupil distortions, and vignetting at the sensor locations. We also describe corrections needed for the split sensors and the effects from the angular separation of different stars providing the intra- and extra-focal images. Lastly, we present simulations that demonstrate convergence, linearity, and negligible noise when compared to atmospheric effects when the algorithm extensions are applied to the LSST optical system. The algorithm extensions reported here are generic and can easily be adapted to other wide-field optical systems including similar telescopes with large central obscuration and off-axis curvature sensing.
A large wide-field telescope and camera with optical throughput over 200 m^2 deg^2 -- a factor of 50 beyond what we currently have -- would enable the detection of faint moving or bursting optical objects: from Earth threatening asteroids to energeti c events at the edge of the optical universe. An optimized design for LSST is a 8.4 m telescope with a 3 degree field of view and an optical throughput of 260 m^2 deg^2. With its large throughput and dedicated all-sky monitoring mode, the LSST will reach 24th magnitude in a single 10 second exposure, opening unexplored regions of astronomical parameter space. The heart of the 2.3 Gpixel camera will be an array of imager modules with 10 micron pixels. Once each month LSST will survey up to 14,000 deg^2 of the sky with many ~10 second exposures. Over time LSST will survey 30,000 deg^2 deeply in multiple bandpasses, enabling innovative investigations ranging from galactic structure to cosmology. This is a shift in paradigm for optical astronomy: from survey follow-up to survey direct science. The resulting real-time data products and fifteen petabyte time-tagged imaging database and photometric catalog will provide a unique resource. A collaboration of ~80 engineers and scientists is gearing up to confront this exciting challenge.
The Large Synoptic Survey Telescope (LSST) will enable revolutionary studies of galaxies, dark matter, and black holes over cosmic time. The LSST Galaxies Science Collaboration has identified a host of preparatory research tasks required to leverage fully the LSST dataset for extragalactic science beyond the study of dark energy. This Galaxies Science Roadmap provides a brief introduction to critical extragalactic science to be conducted ahead of LSST operations, and a detailed list of preparatory science tasks including the motivation, activities, and deliverables associated with each. The Galaxies Science Roadmap will serve as a guiding document for researchers interested in conducting extragalactic science in anticipation of the forthcoming LSST era.
The CFHT Large Area U-band Deep Survey (CLAUDS) uses data taken with the MegaCam mosaic imager on CFHT to produce images of 18.60 deg2 with median seeing of FWHM=0.92 arcsec and to a median depth of U = 27.1 AB (5 sigma in 2 arcsec apertures), with s elected areas that total 1.36 deg2 reaching a median depth of U=27.7 AB. These are the deepest U-band images assembled to date over this large an area. These data are located in four fields also imaged to comparably faint levels in grizy and several narrowband filters as part of the Hyper Suprime-Cam (HSC) Subaru Strategic Program (HSC-SSP). These CFHT and Subaru datasets will remain unmatched in their combination of area and depth until the advent of the Large Synoptic Survey Telescope (LSST). This paper provides an overview of the scientific motivation for CLAUDS and gives details of the observing strategy, observations, data reduction, and data merging with the HSC-SSP. Three early applications of these deep data are used to illustrate the potential of the dataset: deep U-band galaxy number counts, z~3 Lyman break galaxy (LBG) selection, and photometric redshifts improved by adding CLAUDS U to the Subaru HSC grizy photometry.
To extend LSSTs coverage of the transient and variable sky down to minute timescales, we propose that observations of the Deep Drilling Fields are acquired in sequences of continuous exposures each lasting 2--4 hours. This will allow LSST to resolve rapid stellar variability such as short-period pulsations, exoplanet transits, ultracompact binary systems, and flare morphologies, while still achieving the desired co-added depths for the selected fields. The greater number of observations of each Deep Drilling Field pushes these mini-surveys deep in terms of both sensitivity to low-amplitude variability and co-added depth. Saving the individual 15-second exposures will yield an effective Nyquist limit of $approx0.031$ Hz (32 seconds). Resolved short-period variability of targets in these fields will aid the interpretation of sparse observations of a greater number of variables in the main survey. If this cadence strategy conflicts with the science goals of individual Deep Drilling Fields, at least a subset of the additional observations of each field should be obtained continuously. This strategy should also be considered for the proposed Galactic Plane mini survey, which will observe a greater number of stellar variables and transients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا