ﻻ يوجد ملخص باللغة العربية
For a discrete group $G$, we develop a `$G$-balanced tensor product of two coactions $(A,delta)$ and $(B,epsilon)$, which takes place on a certain subalgebra of the maximal tensor product $Aotimes_{max} B$. Our motivation for this is that we are able to prove that given two actions of $G$, the dual coaction on the crossed product of the maximal-tensor-product action is isomorphic to the $G$-balanced tensor product of the dual coactions. In turn, our motivation for this is to give an analogue, for coaction functors, of a crossed-product functor originated by Baum, Guentner, and Willett, and further developed by Buss, Echterhoff, and Willett, that involves tensoring an action with a fixed action $(C,gamma)$, then forming the image inside the crossed product of the maximal-tensor-product action. We prove that composing our tensor-product coaction functor with the full crossed product of an action reproduces the tensor-crossed-product functor of Baum, Guentner, and Willett. We prove that every such tensor-product coaction functor is exact, thereby recovering the analogous result for the tensor-crossed-product functors of Baum, Guentner, and Willett. When $(C,gamma)$ is the action by translation on $ell^infty(G)$, we prove that the associated tensor-product coaction functor is minimal, generalizing the analogous result of Buss, Echterhoff, and Willett for tensor-crossed-product functors.
We develop an approach, using what we call tensor $D$ coaction functors, to the $C$-crossed-product functors of Baum, Guentner, and Willett. We prove that the tensor $D$ functors are exact, and identify the minimal such functor. This continues our pr
In further study of the application of crossed-product functors to the Baum-Connes Conjecture, Buss, Echterhoff, and Willett introduced various other properties that crossed-product functors may have. Here we introduce and study analogues of these pr
Canonical tensor product subfactors (CTPSs) describe, among other things, the embedding of chiral observables in two-dimensional conformal quantum field theories. A new class of CTPSs is constructed some of which are associated with certain modular i
A cosystem consists of a possibly nonselfadoint operator algebra equipped with a coaction by a discrete group. We introduce the concept of C*-envelope for a cosystem; roughly speaking, this is the smallest C*-algebraic cosystem that contains an equiv
Let $(G, P)$ be an abelian, lattice ordered group and let $X$ be a compactly aligned product system over $P$. We show that the C*-envelope of the Nica tensor algebra $mathcal{N}mathcal{T}^+_X$ coincides with both Sehnems covariance algebra $mathcal{A