ﻻ يوجد ملخص باللغة العربية
Context. Backreactions from large-scale inhomogeneities may provide an elegant explanation for the observed accelerated expansion of the universe without the need to introduce dark energy. Aims. We propose a cosmological test for a specific model of inhomogeneous cosmology, called timescape cosmology. Using large-scale galaxy surveys such as SDSS and 2MRS, we test the variation of expansion expected in the $Lambda$-CDM model versus a more generic differential expansion using our own calibrations of bounds suggested by timescape cosmology. Method. Our test measures the systematic variations of the Hubble flow towards distant galaxies groups as a function of the matter distribution in the lines of sight to those galaxy groups. We compare the observed systematic variation of the Hubble flow to mock catalogues from the Millennium Simulation in the case of the $Lambda$-CDM model, and a deformed version of the same simulation that exhibits more pronounced differential expansion. Results. We perform a series of statistical tests, ranging from linear regressions to Kolmogorov-Smirnov tests, on the obtained data. They consistently yield results preferring $Lambda$-CDM cosmology over our approximated model of timescape cosmology. Conclusions. Our analysis of observational data shows no evidence that the variation of expansion differs from that of the standard $Lambda$-CDM model.
In relativistic inhomogeneous cosmology, structure formation couples to average cosmological expansion. A conservative approach to modelling this assumes an Einstein--de Sitter model (EdS) at early times and extrapolates this forward in cosmological
One of the biggest mysteries in cosmology is Dark Energy, which is required to explain the accelerated expansion of the universe within the standard model. But maybe one can explain the observations without introducing new physics, by simply taking o
The calculation of the averaged Hubble expansion rate in an averaged perturbed Friedmann-Lemaitre-Robertson-Walker cosmology leads to small corrections to the background value of the expansion rate, which could be important for measuring the Hubble c
The Hubble constant Ho describes not only the expansion of local space at redshift z ~ 0, but is also a fundamental parameter determining the evolution of the universe. Recent measurements of Ho anchored on Cepheid observations have reached a precisi
Even in a universe that is homogeneous on large scales, local density fluctuations can imprint a systematic signature on the cosmological inferences we make from distant sources. One example is the effect of a local under-density on supernova cosmolo