ترغب بنشر مسار تعليمي؟ اضغط هنا

The OSIRIS Lens-Amplified Survey (OLAS) I: Dynamical Effects of Stellar Feedback in Low Mass Galaxies at z ~ 2

76   0   0.0 ( 0 )
 نشر من قبل Jessie Hirtenstein
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the OSIRIS Lens-Amplified Survey (OLAS), a kinematic survey of gravitationally lensed galaxies at cosmic noon taken with Keck adaptive optics. In this paper we present spatially resolved spectroscopy and nebular emission kinematic maps for 17 star forming galaxies with stellar masses 8 < log($M_*$/$M_{odot}$) < 9.8 and redshifts 1.2 < z < 2.3. OLAS is designed to probe the stellar mass ($M_*$) and specific star formation rate (sSFR) range where simulations suggest that stellar feedback is most effective at driving gaseous outflows that create galaxy-wide potential fluctuations which can generate dark matter cores. We compare our kinematic data with the trend between sSFR, $M_*$ and H$alpha$ velocity dispersion, $sigma$, from the Feedback In Realistic Environments (FIRE) simulations. Our observations reveal a correlation between sSFR and sigma at fixed $M_*$ that is similar to the trend predicted by simulations: feedback from star formation drives star-forming gas and newly formed stars into more dispersion dominated orbits. The observed magnitude of this effect is in good agreement with the FIRE simulations, in which feedback alters the central density profiles of low mass galaxies, converting dark matter cusps into cores over time. Our data support the scenario that stellar feedback drives gaseous outflows and potential fluctuations, which in turn drive dark matter core formation in dwarf galaxies.

قيم البحث

اقرأ أيضاً

We present results from the KMOS Lens-Amplified Spectroscopic Survey (KLASS), an ESO Very Large Telescope (VLT) large program using gravitational lensing to study the spatially resolved kinematics of 44 star-forming galaxies at 0.6<z<2.3 with a stell ar mass of 8.1<log(M$_star$/M$_{odot}$)<11.0. These galaxies are located behind six galaxy clusters selected from the HST Grism Lens-Amplified Survey from Space (GLASS). We find that the majority of the galaxies show a rotating disk, but most of the rotation-dominated galaxies only have a low $upsilon_{rot}/sigma_0$ ratio (median of $upsilon_{rot}/sigma_0sim2.5$). We explore the Tully-Fisher relation by adopting the circular velocity, $V_{circ}=(upsilon_{rot}^2+3.4sigma_0^2)^{1/2}$, to account for pressure support. We find that our sample follows a Tully-Fisher relation with a positive zero-point offset of +0.18 dex compared to the local relation, consistent with more gas-rich galaxies that still have to convert most of their gas into stars. We find a strong correlation between the velocity dispersion and stellar mass in the KLASS sample. When combining our data to other surveys from the literature, we also see an increase of the velocity dispersion with stellar mass at all redshift. We obtain an increase of $upsilon_{rot}/sigma_0$ with stellar mass at 0.5<z<1.0. This could indicate that massive galaxies settle into regular rotating disks before the low-mass galaxies. For higher redshift (z>1), we find a weak increase or flat trend. We investigate the relation between the rest-frame UV clumpiness of galaxies and their global kinematic properties. We find no clear trend between the clumpiness and the velocity dispersion and $upsilon_{rot}/sigma_0$. This could suggest that the kinematic properties of galaxies evolve after the clumps formed in the galaxy disk or that the clumps can form in different physical conditions.
We reliably extend the stellar mass-size relation over $0.2leq z leq2$ to low stellar mass galaxies by combining the depth of Hubble Frontier Fields (HFF) with the large volume covered by CANDELS. Galaxies are simultaneously modelled in multiple band s using the tools developed by the MegaMorph project, allowing robust size (i.e., half-light radius) estimates even for small, faint, and high redshift galaxies. We show that above 10$^7$M$_odot$, star-forming galaxies are well represented by a single power law on the mass-size plane over our entire redshift range. Conversely, the stellar mass-size relation is steep for quiescent galaxies with stellar masses $geq 10^{10.3}$M$_odot$ and flattens at lower masses, regardless of whether quiescence is selected based on star-formation activity, rest-frame colours, or structural characteristics. This flattening occurs at sizes of $sim1$kpc at $zleq1$. As a result, a double power law is preferred for the stellar mass-size relation of quiescent galaxies, at least above 10$^7$M$_odot$. We find no strong redshift dependence in the slope of the relation of star-forming galaxies as well as of high mass quiescent galaxies. We also show that star-forming galaxies with stellar masses $geq$10$^{9.5}$M$_odot$ and quiescent galaxies with stellar masses $geq10^{10.3}$M$_odot$ have undergone significant size growth since $zsim2$, as expected; however, low mass galaxies have not. Finally, we supplement our data with predominantly quiescent dwarf galaxies from the core of the Fornax cluster, showing that the stellar mass-size relation is continuous below 10$^7$M$_odot$, but a more complicated functional form is necessary to describe the relation.
296 - Vincent Maillard , Emeric Bron , 2021
The atomic-to-molecular hydrogen (H/H2) transition has been extensively studied as it controls the fraction of gas in a molecular state in an interstellar cloud. This fraction is linked to star-formation by the Schmidt-Kennicutt law. While theoretica l estimates of the column density of the H I layer have been proposed for static photodissociation regions (PDRs), Herschel and well-resolved ALMA (Atacama Large Millimeter Array) observations have revealed dynamical effects in star forming regions, caused by the process of photoevaporation. We extend the analytic study of the H/H2 transition to include the effects of the propagation of the ionization front, in particular in the presence of photoevaporation at the walls of blister H II regions, and we find its consequences on the total atomic hydrogen column density at the surface of clouds in the presence of an ultraviolet field, and on the properties of the H/H2 transition. We solved semi-analytically the differential equation giving the H2 column density profile by taking into account H2 formation on grains, H2 photodissociation, and the ionization front propagation dynamics modeled as advection of the gas through the ionization front. Taking this advection into account reduces the width of the atomic region compared to static models. The atomic region may disappear if the ionization front velocity exceeds a certain value, leading the H/H2 transition and the ionization front to merge. For both dissociated and merged configurations, we provide analytical expressions to determine the total H I column density. Our results take the metallicity into account. Finally, we compared our results to observations of PDRs illuminated by O-stars, for which we conclude that the dynamical effects are strong, especially for low-excitation PDRs.
Using deep Hubble Frontier Fields imaging and slitless spectroscopy from the Grism Lens-Amplified Survey from Space, we analyze 2200 cluster and 1748 field galaxies at $0.2leq zleq0.7$ to determine the impact of environment on galaxy size and structu re at $log M_*/M_odot>7.8$, an unprecedented limit at these redshifts. Based on simple assumptions-$r_e=f(M_*)$-we find no significant differences in half-light radii ($r_e$) between equal-mass cluster or field systems. More complex analyses-$r_e=f(M_*,U-V,n,z,Sigma$)-reveal local density $(Sigma$) to induce only a $7% pm 3%$ ($95%$ confidence) reduction in $r_e$ beyond what can be accounted for by $U-V$ color, Sersic index ($n$), and redshift ($z$) effects.Almost any size difference between galaxies in high- and low-density regions is thus attributable to their different distributions in properties other than environment. Indeed, we find a clear color-$r_e$ correlation in low-mass passive cluster galaxies ($log M_*/M_odot<9.8$) such that bluer systems have larger radii, with the bluest having sizes consistent with equal-mass star-forming galaxies. We take this as evidence that large-$r_e$ low-mass passive cluster galaxies are recently acquired systems that have been environmentally quenched without significant structural transformation (e.g., by ram pressure stripping or starvation).Conversely, $sim20%$ of small-$r_e$ low-mass passive cluster galaxies appear to have been in place since $zsim3$. Given the consistency of the small-$r_e$ galaxies stellar surface densities (and even colors) with those of systems more than ten times as massive, our findings suggest that clusters mark places where galaxy evolution is accelerated for an ancient base population spanning most masses, with late-time additions quenched by environment-specific mechanisms are mainly restricted to the lowest masses.
Exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 high star forming galaxies in 10 clusters at 0.3< z <0.7. All these galaxies are likely restricted to first in fall. In a companion paper we contrast the properties of field and cluster galaxies, whereas here we correlate the properties of H{alpha} emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. H{alpha} emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the H{alpha} emission is offset with respect to the peak of the UV-continuum. We decompose this offsets into a radial and tangential component. The radial compo- nent points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations, i.e. the H{alpha} emission offset correlates with galaxy velocity and ram-pressure stripping signatures. Trends between H{alpha} emitter properties and surface mass density distributions and X-ray emissions emerge only for unrelaxed clusters. The lack of strong correlations with the global environment does not allow us to identify a unique environmental effect originating from the cluster center. In contrast, correla- tions between H{alpha} morphology and local number density emerge. We conclude that local effects, uncorrelated to the cluster-centric radius, play a more important role in shaping galaxy properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا