ﻻ يوجد ملخص باللغة العربية
In this study, we investigate observability of the neutral scalar ($H$) and pseudoscalar ($A$) Higgs bosons in the framework of the Type-I 2HDM at SM-like scenario at a linear collider operating at $sqrt s=$ 500 and 1000 GeV. The signal process chain $e^- e^+ rightarrow A H rightarrow ZHHrightarrow jj bbar{b}bbar{b}$ where $jj$ is a di-jet resulting from the $Z$ boson decay and $bbar{b}$ is a $b$ quark pair, is assumed and several benchmark scenarios with different mass hypotheses are studied. The assumed signal process is mainly motivated by the possible enhancements the decay modes $Arightarrow ZH$ and $Hrightarrow bbar{b}$ may receive in the Type-I. Event generation is performed for the assumed scenarios separately and the beamstrahlung effects are taken into account. The detector response is simulated based on the SiD detector at the ILC and the simulated events are analyzed to obtain candidate mass distributions of the Higgs bosons. According to the results, the top quark pair production process has the most contribution to the total background and is, however, well-controlled. Results indicate that, in all of the considered scenarios, both of the Higgs bosons $H$ and $A$ are observable with signals exceeding $5sigma$ with possibility of mass measurement. To be specific, at $sqrt s=500$ GeV, the region of parameter space with $m_H=150$ GeV and $200leq m_A leq 250$ GeV is observable at the integrated luminosity of 500 $fb^{-1}$. Also, at $sqrt s=1000$ GeV, the region with $150leq m_H leq 250$ GeV and $200leq m_A leq 330$ GeV with a mass splitting of 50-100 GeV between the $H$ and $A$ Higgs bosons is observable at the same integrated luminosity.
Doubly-charged Higgs bosons ($Delta^{--}/Delta^{++}$) appear in several extensions to the Standard Model and can be relatively light. We review the theoretical motivation for these states and present a study of the discovery reach in future runs of t
Inclusive Higgs boson pair production through the mechanism of gauge boson fusion e^{+} e^{-} -> V* V* -> h h + X (V=W,Z) in the general Two-Higgs-Doublet Model (2HDM), with h=h^0,H^0,A^0,H^{pm}, is analyzed at order alpha^4_{ew} in the linear collid
Future $gammagamma$ colliders allow the production of the heavy neutral MSSM Higgs bosons $H$ and $A$ as single resonances. The prospects of finding these particles in the $bbar{b}$ and the neutralino-pair final states have been analysed. The $H,A$ b
We investigate the possibility of detecting the Higgs bosons predicted in the Minimal Supersymmetric extension of the Standard Model $(h^0, H^0, A^0, H^pm)$, with the reactions $e^{+}e^{-}to bbar b h^0 (H^0, A^0)$, and $e^+e^-to tau^-bar u_tau H^+,
In the framework of the $mathcal{CP}$ conserving Two Higgs Doublet Model (2HDM), type I and II, we study the triple Higgs couplings with at least one light $h$ Higgs boson that is identified by the 125 GeV Higgs boson. We define benchmark planes that