ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution MEGARA IFU spectroscopy and structural analysis of a fast-rotating, disky bulge in NGC 7025

99   0   0.0 ( 0 )
 نشر من قبل Bililign T. Dullo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bililign T. Dullo




اسأل ChatGPT حول البحث

Disky bulges in spiral galaxies are commonly thought to form out of disk materials (mainly) via bar driven secular processes, they are structurally and dynamically distinct from `classical bulges built in violent merger events. We use high-resolution GTC/MEGARA integral-field unit spectroscopic observations of the Sa galaxy NGC 7025, obtained during the MEGARA commissioning run, together with detailed 1D and 2D decompositions of this galaxys SDSS $i$-band data to investigate the formation of its disky (bulge) component which makes up $sim 30%$ of the total galaxy light. With a Sersic index $n sim 1.80 pm 0.24$, half-light radius $R_{rm e} sim 1.70 pm 0.43$ kpc and stellar mass $M_{*} sim (4.34 pm 1.70) times10^{10} M_{odot}$, this bulge dominates the galaxy light distribution in the inner $R sim 15$ ($sim 4.7$ kpc). Measuring the spins ($lambda$) and ellipticities ($epsilon$) enclosed within nine different circular apertures with radii $R le R_{rm e}$, we show that the bulge, which exhibits a spin track of an outwardly rising $lambda$ and $epsilon$, is a fast rotator for all the apertures considered. Our findings suggest that this inner disky component is a pseudo-bulge, consistent with the stellar and dust spiral patterns seen in the galaxy down to the innermost regions but in contrast to the classical bulge interpretation favored in the past. We propose that a secular process involving the tightly wound stellar spiral arms of NGC 7025 may drive gas and stars out of the disk into the inner regions of the galaxy, building up the massive pseudo-bulge.



قيم البحث

اقرأ أيضاً

We present our analysis of high-resolution (R $sim$ 20 000) GTC/MEGARA integral-field unit spectroscopic observations, obtained during the commissioning run, in the inner region (12.5 arcsec x 11.3 arcsec) of the active galaxy NGC7469, at spatial sca les of 0.62 arcsec. We explore the kinematics, dynamics, ionisation mechanisms and oxygen abundances of the ionised gas, by modelling the H$alpha$-[NII] emission lines at high signal-to-noise (>15) with multiple Gaussian components. MEGARA observations reveal, for the first time for NGC7469, the presence of a very thin (20 pc) ionised gas disc supported by rotation (V/$sigma$ = 4.3), embedded in a thicker (222 pc), dynamically hotter (V/$sigma$ = 1.3) one. These discs nearly co-rotate with similar peak-to-peak velocities (163 vs. 137 km/s ), but with different average velocity dispersion (38 vs. 108 km/s ). The kinematics of both discs could be possibly perturbed by star-forming regions. We interpret the morphology and the kinematics of a third (broader) component ($sigma$ > 250 km/s) as suggestive of the presence of non-rotational turbulent motions possibly associated either to an outflow or to the lense. For the narrow component, the [NII]/H$alpha$ ratios point to the star-formation as the dominant mechanism of ionisation, being consistent with ionisation from shocks in the case of the intermediate component. All components have roughly solar metallicity. In the nuclear region of NGC7469, at r < 1.85 arcsec, a very broad (FWHM = 2590 km/s ) H{alpha} component is contributing (41%) to the global H$alpha$ -[NII]profile, being originated in the (unresolved) broad line region of the Seyfert 1.5 nucleus of NGC7469.
Globular clusters associated with the Galactic bulge are important tracers of stellar populations in the inner Galaxy. High resolution analysis of stars in these clusters allows us to characterize them in terms of kinematics, metallicity, and individ ual abundances, and to compare these fingerprints with those characterizing field populations. We present iron and element ratios for seven red giant stars in the globular cluster NGC~6723, based on high resolution spectroscopy. High resolution spectra ($Rsim48~000$) of seven K giants belonging to NGC 6723 were obtained with the FEROS spectrograph at the MPG/ESO 2.2m telescope. Photospheric parameters were derived from $sim130$ FeI and FeII transitions. Abundance ratios were obtained from line-to-line spectrum synthesis calculations on clean selected features. An intermediate metallicity of [Fe/H]$=-0.98pm0.08$ dex and a heliocentric radial velocity of $v_{hel}=-96.6pm1.3~km s^{-1}$ were found for NGC 6723. Alpha-element abundances present enhancements of $[O/Fe]=0.29pm0.18$ dex, $[Mg/Fe]=0.23pm0.10$ dex, $[Si/Fe]=0.36pm0.05$ dex, and $[Ca/Fe]=0.30pm0.07$ dex. Similar overabundance is found for the iron-peak Ti with $[Ti/Fe]=0.24pm0.09$ dex. Odd-Z elements Na and Al present abundances of $[Na/Fe]=0.00pm0.21$ dex and $[Al/Fe]=0.31pm0.21$ dex, respectively. Finally, the s-element Ba is also enhanced by $[Ba/Fe]=0.22pm0.21$ dex. The enhancement levels of NGC 6723 are comparable to those of other metal-intermediate bulge globular clusters. In turn, these enhancement levels are compatible with the abundance profiles displayed by bulge field stars at that metallicity. This hints at a possible similar chemical evolution with globular clusters and the metal-poor of the bulge going through an early prompt chemical enrichment.
NGC 4194 is a post-merger starburst known as The Medusa for its striking tidal features. We present here a detailed study of the structure and kinematics of ionized gas in the central 0.65 kpc of the Medusa. The data include radio continuum maps with resolution up to $0.18arcsec$ (35 pc) and a $12.8mu$m [NeII] data cube with spectral resolution $sim4$kms: the first {it high resolution, extinction-free} observations of this remarkable object. The ionized gas has the kinematic signature of a core in solid-body rotation. The starburst has formed a complex of bright compact HII~regions, probably excited by deeply embedded super star clusters, but none of these sources is a convincing candidate for a galactic nucleus. The nuclei of the merger partners that created the Medusa have not yet been identified.
96 - Y.D. Mayya 2020
We here report the detection of extended HeII4686 nebular emission in the central region of NGC1569 using the integral field spectrograph MEGARA at the 10.4-m Gran Telescopio Canarias. The observations cover a Field of View (FoV) of 12.5 arcsec x 11. 3 arcsec at seeing-limited spatial resolution of ~15 pc and at a spectral resolution of R=6000 in the wavelength range 4330--5200 Angstrom. The emission extends over a semi-circular arc of ~40 pc width and ~150 pc diameter around the super star cluster A (SSC-A). The Av derived using Balmer decrement varies from the Galactic value of 1.6 mag to a maximum of ~4.5 mag, with a mean value of 2.65+/-0.60 mag. We infer 124+/-11 Wolf-Rayet (WR) stars in SSC-A using the HeII4686 broad feature and Av=2.3 mag. The He+ ionizing photon rate from these WR stars is sufficient to explain the luminosity of the HeII4686 nebula. The observationally-determined total He+ and H0 ionizing photon rates, their ratio, and the observed number of WR stars in SSC-A are all consistent with the predictions of simple stellar population models at an age of 4.0+/-0.5 Myr, and mass of (5.5+/-0.5)x10^5 Msun. Our observations reinforce the absence of WR stars in SSC-B, the second most massive cluster in the FoV. None of the other locations in our FoV where HeII4686 emission has been reported from narrow-band imaging observations contain WR stars.
122 - E. Congiu 2017
We studied the properties of the gas of the extended narrow line region (ENLR) of two Seyfert 2 galaxies: IC 5063 and NGC 7212. We analysed high resolution spectra to investigate how the main properties of this region depend on the gas velocity. We d ivided the emission lines in velocity bins and we calculated several line ratios. Diagnostic diagrams and SUMA composite models (photo-ionization + shocks), show that in both galaxies there might be evidence of shocks significantly contributing in the gas ionization at high |V|, even though photo-ionization from the active nucleus remains the main ionization mechanism. In IC 5063 the ionization parameter depends on V and its trend might be explained assuming an hollow bi-conical shape for the ENLR, with one of the edges aligned with the galaxy disk. On the other hand, NGC 7212 does not show any kind of dependence. The models show that solar O/H relative abundances reproduce the observed spectra in all the analysed regions. They also revealed an high fragmentation of the gas clouds, suggesting that the complex kinematics observed in these two objects might be caused by interaction between the ISM and high velocity components, such as jets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا