ﻻ يوجد ملخص باللغة العربية
We demonstrate a 1.4 W continuous wavelength (CW) laser at 243.1 nm. The radiation is generated through frequency quadrupling the output of a ytterbium-doped fiber amplifier system which produces $>$ 10 W of CW power at 972.5 nm. We demonstrate absolute frequency control by locking the laser to an optical frequency comb and exciting the 1S-2S transition in atomic hydrogen. This frequency-stabilized, high-power deep-UV laser should be of significant interest for precision spectroscopy of simple and exotic atoms, two-photon laser cooling of hydrogen, and Raman spectroscopy.
We report on a monolithic thulium fiber laser with 567 W output power at 1970 nm, which is the highest power reported so far directly from a thulium oscillator. This is achieved by optimization of the splice parameters for the active fiber (minimizin
We developed a laser system for the spectroscopy of the clock transition in ytterbium (Yb) atoms at 578 nm based on an interference-filter stabilized external-cavity diode laser (IFDL) emitting at 1156 nm. Owing to the improved frequency-to-current r
We present a resonantly frequency-doubled tapered amplified semiconductor laser system emitting up to 2.6 W blue light at 400 nm. The output power is stable on both short and long timescales with 0.12% RMS relative intensity noise, and less than 0.15
We demonstrate a compact laser source suitable for the trapping and cooling of potassium. By frequency doubling a fiber laser diode at 1534 nm in a waveguide, we produce 767 nm laser light. A current modulation of the diode allows to generate the two
We demonstrate a narrow-linewidth 780 nm laser system with up to 40 W power and a frequency modulation bandwidth of 230 MHz. Efficient overlap on nonlinear optical elements combines two pairs of phase-locked frequency components into a single beam. S