ﻻ يوجد ملخص باللغة العربية
Hybrid Massive MIMO reduces implementation complexity but only supports beamforming coefficients that are common across all subbands. However, in macro cellular where the channel has limited degrees of freedom, the long-term component of the channel can be decomposed into a set of subband-independent beamforming basis functions referred to as eigenbeams. A Coherent Hybrid Massive MIMO system can form arbitrary linear combinations of the eigenbeams at every subband to mimic Digital Massive MIMO beamforming as observed across all locations in the cell.
Over-the-air computation (AirComp) has been recognized as a promising technique in Internet-of-Things (IoT) networks for fast data aggregation from a large number of wireless devices. However, as the number of devices becomes large, the computational
Switch-based hybrid network is a promising implementation for beamforming in large-scale millimetre wave (mmWave) antenna arrays. By fully exploiting the sparse nature of the mmWave channel, such hybrid beamforming reduces complexity and power consum
In this paper, we consider hybrid beamforming designs for multiuser massive multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) systems. Aiming at maximizing the weighted spectral efficiency, we propose one alterna
In this paper, we propose an energy-efficient radar beampattern design framework for a Millimeter Wave (mmWave) massive multi-input multi-output (mMIMO) system, equipped with a hybrid analog-digital (HAD) beamforming structure. Aiming to reduce the p
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. However, these two modules have been treated as two stand-alone components, which makes it difficult t