ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of AlN Seed Layer on Crystallographic Characterization of Piezoelectric AlN

347   0   0.0 ( 0 )
 نشر من قبل Kaitlin Howell
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrathin aluminum nitride (AlN) films are of great interest for integration into nanoelectromechanical systems for actuation and sensing. Given the direct relationship between crystallographic texture and piezoelectric response, x-ray diffraction has become an important metrology step. However, signals from layers deposited below the piezoelectric (PZE) AlN thin film may skew the crystallographic analysis and give misleading results. In this work, we compare the use of a Ti or AlN seed layer on the crystallographic quality of PZE AlN. We also analyze the influence of several AlN seed layer thicknesses on the rocking curve FWHM of PZE AlN and demonstrate an larger effect of the AlN seed layer on the {theta}-2{theta} AlN <0002> crystallographic peak for increasing AlN seed layer thickness.



قيم البحث

اقرأ أيضاً

Since AlN has emerged as an important piezoelectric material for a wide variety of applications, efforts have been made to increase its piezoelectric response via alloying with transition metals that can substitute for Al in the wurtzite lattice. Her ein, we report density functional theory calculations of structure and properties of the Cr-AlN system for Cr concentrations ranging past the wurtzite-rocksalt transition point. By studying the different contributions to the longitudinal piezoelectric coefficient, we propose that the physical origin of the enhanced piezoelectricity in Cr$_x$Al$_{1-x}$N alloys is the increase of the internal parameter $u$ of the wurtzite structure upon substitution of Al with the larger Cr ions. Among a set of wurtzite-structured materials, we have found that Cr-AlN has the most sensitive piezoelectric coefficient with respect to alloying concentration. Based on these results, we propose that Cr-AlN is a viable piezoelectric material whose properties can be tuned via Cr composition; we support this proposal by combinatorial synthesis experiments, which show that Cr can be incorporated in the AlN lattice up to 30% before a detectable transition to rocksalt occurs. At this Cr content, the piezoelectric modulus $d_{33}$ is approximately four times larger than that of pure AlN. This finding, combined with the relative ease of synthesis, may propel Cr-AlN as the prime piezoelectric material for applications such as resonators and acoustic wave generators.
This work shows that the combination of ultrathin highly strained GaN quantum wells embedded in an AlN matrix, with controlled isotopic concentrations of Nitrogen enables a dual marker method for Raman spectroscopy. By combining these techniques, we demonstrate the effectiveness in studying strain in the vertical direction. This technique will enable the precise probing of properties of buried active layers in heterostructures, and can be extended in the future to vertical devices such as those used for optical emitters, and for power electronics.
Development of low-loss photonic components in the ultraviolet (UV) band will open new prospects for classical and quantum optics. Compared with other integrated platforms, aluminum nitride (AlN) is particularly attractive as it features an enormous bandgap of ~6.2 eV and intrinsic chi(2) and chi(3) susceptibilities. In this work, we demonstrate a record quality factor of 2.1 x 105 (optical loss ~ 8 dB/cm) at 390 nm based on single-crystalline AlN microrings. The low-loss AlN UV waveguide represents a significant milestone toward UV photonic integrated circuits as it features full compatibility for future incorporation of AlGaN-based UV emitters and receivers. On-chip UV spectroscopy, nonlinear optics and quantum information processing can also be envisioned.
In this paper, we describe the design and characterization of 400-nm-long (88 periods) AlxGa1-xN/AlN (0 < x < 0.1) quantum dot superlattices deposited on self-assembled GaN nanowires for application in electron-pumped ultraviolet sources. The optical performance of GaN/AlN superlattices on nanowires is compared with the emission of planar GaN/AlN superlattices with the same periodicity and thickness grown on bulk GaN substrates along the N-polar and metal-polar crystallographic axes. The nanowire samples are less sensitive to nonradiative recombination than planar layers, attaining internal quantum efficiencies (IQE) in excess of 60% at room temperature even under low injection conditions. The IQE remains stable for higher excitation power densities, up to 50 kW/cm2. We demonstrate that the nanowire superlattice is long enough to collect the electron-hole pairs generated by an electron beam with an acceleration voltage VA = 5 kV. At such VA, the light emitted from the nanowire ensemble does not show any sign of quenching under constant electron beam excitation (tested for an excitation power density around 8 kW/cm2 over the scale of minutes). Varying the dot/barrier thickness ratio and the Al content in the dots, the nanowire peak emission can be tuned in the range from 340 to 258 nm. Keywords: GaN, AlN, nanowire, ultraviolet
We describe studies on the nanoscale transport dynamics of carriers in strained AlN/GaN/AlN quantum wells: an electron-hole bilayer charge system with large difference in transport properties between the two charge layers. From electronic band diagra m analysis, the presence of spatially separated two-dimensional electron and hole charge layers is predicted at opposite interfaces. Since these charge layers exhibit distinct spectral signatures at terahertz frequencies, a combination of terahertz and far-infrared spectroscopy enables us to extract (a) individual contributions to the total conductivity, as well as (b) effective scattering rates for charge-carriers in each layer. Furthermore, by comparing direct-current and terahertz extracted conductivity levels, we are able to determine the extent to which structural defects affect charge transport. Our results evidence that (i) a non-unity Hall-factor and (ii) the considerable contribution of holes to the overall conductivity, lead to a lower apparent mobility in Hall-effect measurements. Overall, our work demonstrates that terahertz spectroscopy is a suitable technique for the study of bilayer charge systems with large differences in transport properties between layers, such as quantum wells in III-Nitride semiconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا