ﻻ يوجد ملخص باللغة العربية
We have analyzed how anisotropic emission of radiation affects the observed sample of ultraluminous X-ray sources (ULXs) by performing simulations of the evolution of stellar populations, employing recent developments in stellar and binary physics, and by utilizing a geometrical beaming model motivated by theory and observation. Whilst ULXs harboring black hole accretors (BH ULXs) are typically emitting isotropically, the majority of ULXs with neutron star accretors (NS ULXs) are found to be beamed. These findings confirm previous assertions that a significant fraction of ULXs are hidden from view due to a substantial misalignment of the emission beam and the line-of-sight. We find the total number of NS ULXs in regions with constant star formation, solar metallicity, and ages above ~1 Gyr to be higher than the BH ULXs, although observationally both populations are comparable. For lower metallicities BH ULX dominate both the total and observed ULX populations. As far as burst star-formation is concerned, young ULX populations are dominated by BH ULXs, but this changes as the population ages and, post star-formation, NS ULXs dominate both the observed and total population of ULXs. We also compare our simulation output to a previous analytical prediction for the relative ratio of BH to NS ULXs in idealized flux-limited observations and find broad agreement for all but the lowest metallicities. In so doing we find that in such surveys the observed ULX population should be heavily dominated by black-hole systems rather than by systems containing neutron stars.
We present results for X-ray point sources in the Sc galaxy NGC 2276, obtained by analyzing Chandra data. The galaxy is known to be very active in many wavelengths, possibly due to gravitational interaction with the central elliptical of the group, N
We have identified seven ultraluminous X-ray sources (ULXs) which are coincident with globular cluster candidates (GCs) associated with M87. ULXs in the old GC environment represent a new population of ULXs, and ones likely to be black holes. In this
The total number and luminosity function of the population of dwarf galaxies of the Milky Way (MW) provide important constraints on the nature of the dark matter and on the astrophysics of galaxy formation at low masses. However, only a partial censu
We consider the current observed ensemble of pulsing ultraluminous X-ray sources (PULXs). We show that all of their observed properties (luminosity, spin period, and spinup rate) are consistent with emission from magnetic neutron stars with fields in
Identifying the compact object in ultraluminous X-ray sources (ULXs) has to-date required detection of pulsations or a cyclotron resonance scattering feature (CRSF), indicating a magnetised neutron star. However, pulsations are observed to be transie