ترغب بنشر مسار تعليمي؟ اضغط هنا

M2E-Try On Net: Fashion from Model to Everyone

83   0   0.0 ( 0 )
 نشر من قبل Zhonghua Wu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most existing virtual try-on applications require clean clothes images. Instead, we present a novel virtual Try-On network, M2E-Try On Net, which transfers the clothes from a model image to a person image without the need of any clean product images. To obtain a realistic image of person wearing the desired model clothes, we aim to solve the following challenges: 1) non-rigid nature of clothes - we need to align poses between the model and the user; 2) richness in textures of fashion items - preserving the fine details and characteristics of the clothes is critical for photo-realistic transfer; 3) variation of identity appearances - it is required to fit the desired model clothes to the person identity seamlessly. To tackle these challenges, we introduce three key components, including the pose alignment network (PAN), the texture refinement network (TRN) and the fitting network (FTN). Since it is unlikely to gather image pairs of input person image and desired output image (i.e. person wearing the desired clothes), our framework is trained in a self-supervised manner to gradually transfer the poses and textures of the models clothes to the desired appearance. In the experiments, we verify on the Deep Fashion dataset and MVC dataset that our method can generate photo-realistic images for the person to try-on the model clothes. Furthermore, we explore the model capability for different fashion items, including both upper and lower garments.



قيم البحث

اقرأ أيضاً

128 - Wu Shi , Tak-Wai Hui , Ziwei Liu 2019
Existing unconditional generative models mainly focus on modeling general objects, such as faces and indoor scenes. Fashion textures, another important type of visual elements around us, have not been extensively studied. In this work, we propose an effective generative model for fashion textures and also comprehensively investigate the key components involved: internal representation, latent space sampling and the generator architecture. We use Gram matrix as a suitable internal representation for modeling realistic fashion textures, and further design two dedicated modules for modulating Gram matrix into a low-dimension vector. Since fashion textures are scale-dependent, we propose a recursive auto-encoder to capture the dependency between multiple granularity levels of texture feature. Another important observation is that fashion textures are multi-modal. We fit and sample from a Gaussian mixture model in the latent space to improve the diversity of the generated textures. Extensive experiments demonstrate that our approach is capable of synthesizing more realistic and diverse fashion textures over other state-of-the-art methods.
Virtual 3D try-on can provide an intuitive and realistic view for online shopping and has a huge potential commercial value. However, existing 3D virtual try-on methods mainly rely on annotated 3D human shapes and garment templates, which hinders the ir applications in practical scenarios. 2D virtual try-on approaches provide a faster alternative to manipulate clothed humans, but lack the rich and realistic 3D representation. In this paper, we propose a novel Monocular-to-3D Virtual Try-On Network (M3D-VTON) that builds on the merits of both 2D and 3D approaches. By integrating 2D information efficiently and learning a mapping that lifts the 2D representation to 3D, we make the first attempt to reconstruct a 3D try-on mesh only taking the target clothing and a person image as inputs. The proposed M3D-VTON includes three modules: 1) The Monocular Prediction Module (MPM) that estimates an initial full-body depth map and accomplishes 2D clothes-person alignment through a novel two-stage warping procedure; 2) The Depth Refinement Module (DRM) that refines the initial body depth to produce more detailed pleat and face characteristics; 3) The Texture Fusion Module (TFM) that fuses the warped clothing with the non-target body part to refine the results. We also construct a high-quality synthesized Monocular-to-3D virtual try-on dataset, in which each person image is associated with a front and a back depth map. Extensive experiments demonstrate that the proposed M3D-VTON can manipulate and reconstruct the 3D human body wearing the given clothing with compelling details and is more efficient than other 3D approaches.
118 - Bin Ren , Hao Tang , Fanyang Meng 2021
2D image-based virtual try-on has attracted increased attention from the multimedia and computer vision communities. However, most of the existing image-based virtual try-on methods directly put both person and the in-shop clothing representations to gether, without considering the mutual correlation between them. What is more, the long-range information, which is crucial for generating globally consistent results, is also hard to be established via the regular convolution operation. To alleviate these two problems, in this paper we propose a novel two-stage Cloth Interactive Transformer (CIT) for virtual try-on. In the first stage, we design a CIT matching block, aiming to perform a learnable thin-plate spline transformation that can capture more reasonable long-range relation. As a result, the warped in-shop clothing looks more natural. In the second stage, we propose a novel CIT reasoning block for establishing the global mutual interactive dependence. Based on this mutual dependence, the significant region within the input data can be highlighted, and consequently, the try-on results can become more realistic. Extensive experiments on a public fashion dataset demonstrate that our CIT can achieve the new state-of-the-art virtual try-on performance both qualitatively and quantitatively. The source code and trained models are available at https://github.com/Amazingren/CIT.
134 - Xin Gao 2021
Image virtual try-on task has abundant applications and has become a hot research topic recently. Existing 2D image-based virtual try-on methods aim to transfer a target clothing image onto a reference person, which has two main disadvantages: cannot control the size and length precisely; unable to accurately estimate the users figure in the case of users wearing thick clothes, resulting in inaccurate dressing effect. In this paper, we put forward an akin task that aims to dress clothing for underwear models. %, which is also an urgent need in e-commerce scenarios. To solve the above drawbacks, we propose a Shape Controllable Virtual Try-On Network (SC-VTON), where a graph attention network integrates the information of model and clothing to generate the warped clothing image. In addition, the control points are incorporated into SC-VTON for the desired clothing shape. Furthermore, by adding a Splitting Network and a Synthesis Network, we can use clothing/model pair data to help optimize the deformation module and generalize the task to the typical virtual try-on task. Extensive experiments show that the proposed method can achieve accurate shape control. Meanwhile, compared with other methods, our method can generate high-resolution results with detailed textures.
Fashion is intertwined with external cultural factors, but identifying these links remains a manual process limited to only the most salient phenomena. We propose a data-driven approach to identify specific cultural factors affecting the clothes peop le wear. Using large-scale datasets of news articles and vintage photos spanning a century, we introduce a multi-modal statistical model to detect influence relationships between happenings in the world and peoples choice of clothing. Furthermore, we apply our model to improve the concrete vision tasks of visual style forecasting and photo timestamping on two datasets. Our work is a first step towards a computational, scalable, and easily refreshable approach to link culture to clothing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا