ﻻ يوجد ملخص باللغة العربية
This paper concerns applications of a recently-developed output-tracking technique to trajectory control of autonomous vehicles. The technique is based on three principles: Newton-Raphson flow for solving algebraic equations,output prediction, and controller speedup. Early applications of the technique, made to simple systems of an academic nature,were implemented by simple algorithms requiring modest computational efforts. In contrast, this paper tests it on commonly-used dynamic models to see if it can handle more complex control scenarios. Results are derived from simulations as well as a laboratory setting, and they indicate effective tracking convergence despite the simplicity of the control algorithm.
This paper presents a control technique for output tracking of reference signals in continuous-time dynamical systems. The technique is comprised of the following three elements: (i) output prediction which has to track the reference signal, (ii) a c
Emergent cooperative adaptive cruise control (CACC) strategies being proposed in the literature for platoon formation in the Connected Autonomous Vehicle (CAV) context mostly assume idealized fixed information flow topologies (IFTs) for the platoon,
Vehicle-to-vehicle communications can be unreliable as interference causes communication failures. Thereby, the information flow topology for a platoon of Connected Autonomous Vehicles (CAVs) can vary dynamically. This limits existing Cooperative Ada
Using deep reinforcement learning, we train control policies for autonomous vehicles leading a platoon of vehicles onto a roundabout. Using Flow, a library for deep reinforcement learning in micro-simulators, we train two policies, one policy with no
This paper presents a novel model-reference reinforcement learning algorithm for the intelligent tracking control of uncertain autonomous surface vehicles with collision avoidance. The proposed control algorithm combines a conventional control method