ﻻ يوجد ملخص باللغة العربية
Full-waveform inversion problems are usually formulated as optimization problems, where the forward-wave propagation operator $f$ maps the subsurface velocity structures to seismic signals. The existing computational methods for solving full-waveform inversion are not only computationally expensive, but also yields low-resolution results because of the ill-posedness and cycle skipping issues of full-waveform inversion. To resolve those issues, we employ machine-learning techniques to solve the full-waveform inversion. Specifically, we focus on applying the convolutional neural network~(CNN) to directly derive the inversion operator $f^{-1}$ so that the velocity structure can be obtained without knowing the forward operator $f$. We build a convolutional neural network with an encoder-decoder structure to model the correspondence from seismic data to subsurface velocity structures. Furthermore, we employ the conditional random field~(CRF) on top of the CNN to generate structural predictions by modeling the interactions between different locations on the velocity model. Our numerical examples using synthetic seismic reflection data show that the propose CNN-CRF model significantly improve the accuracy of the velocity inversion while the computational time is reduced.
In this article, continuous Galerkin finite elements are applied to perform full waveform inversion (FWI) for seismic velocity model building. A time-domain FWI approach is detailed that uses meshes composed of variably sized triangular elements to d
In this paper, mm-Pose, a novel approach to detect and track human skeletons in real-time using an mmWave radar, is proposed. To the best of the authors knowledge, this is the first method to detect >15 distinct skeletal joints using mmWave radar ref
To address potential gaps noted in patient monitoring in the hospital, a novel patient behavior detection system using mmWave radar and deep convolution neural network (CNN), which supports the simultaneous recognition of multiple patients behaviors
Acoustic- and elastic-waveform inversion is an important and widely used method to reconstruct subsurface velocity image. Waveform inversion is a typical non-linear and ill-posed inverse problem. Existing physics-driven computational methods for solv
Seismic full-waveform inversion (FWI) techniques aim to find a high-resolution subsurface geophysical model provided with waveform data. Some recent effort in data-driven FWI has shown some encouraging results in obtaining 2D velocity maps. However,