ترغب بنشر مسار تعليمي؟ اضغط هنا

Identical pion intensity interferometry in central Au+Au collisions at 1.23A GeV

110   0   0.0 ( 0 )
 نشر من قبل Roland Kotte
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate identical pion HBT intensity interferometry for central Au+Au collisions at 1.23A GeV. High-statistics $pi^-pi^-$ and $pi^+pi^+$ data are measured with HADES at SIS18/GSI. The radius parameters, derived from the correlation function depending on relative momenta in the longitudinal-comoving system and parametrized as three-dimensional Gaussian distribution, are studied as function of transverse momentum. A substantial charge-sign difference of the source radii is found, particularly pronounced at low transverse momentum. The extracted Coulomb-corrected source parameters agree well with a smooth extrapolation of the center-of-mass energy dependence established at higher energies, extending the corresponding excitation functions down towards a very low energy. Our data would thus rather disfavour any strong energy dependence of the radius parameters in the low energy region.

قيم البحث

اقرأ أيضاً

The centrality determination for Au+Au collisions at 1.23A GeV, as measured with HADES at the GSI-SIS18, is described. In order to extract collision geometry related quantities, such as the average impact parameter or number of participating nucleons , a Glauber Monte Carlo approach is employed. For the application of this model to collisions at this relatively low centre-of-mass energy of $sqrt{s_{mathrm{NN}}} = 2.42$ GeV special investigations were performed. As a result a well defined procedure to determine centrality classes for ongoing analyses of heavy-ion data is established.
94 - Zhangbu Xu 2004
The combination of the ionization energy loss (dE/dx) from Time Projection Chamber (TPC) at $simeq8$% resolution and multi-gap resistive plate chamber time-of-flight (TOF) at 85$ps$ provides powerful particle identification. We present spectra of ide ntified charged pions from transverse momentum $p_Tsimeq0.2$ GeV/c to ~7-8 GeV/c in Au+Au collisions at $sqrt{s_{_{NN}}}=62.4$ GeV. Physics implications will be discussed.
High-statistics $pi^-pi^-$ and $pi^+pi^+$ femtoscopy data are presented for Au+Au collisions at $sqrt{s_mathrm{NN}}=2.4$ GeV, measured with HADES at SIS18/GSI. The experimental correlation functions allow the determination of the space-time extent of the corresponding emission sources via a comparison to models. The emission source, parametrized as three-dimensional Gaussian distribution, is studied in dependence on pair transverse momentum, azimuthal emission angle with respect to the reaction plane, collision centrality and beam energy. For all centralities and transverse momenta, a geometrical distribution of ellipsoidal shape is found in the plane perpendicular to the beam direction with the larger extension perpendicular to the reaction plane. For large transverse momenta, the corresponding eccentricity approaches the initial eccentricity. The eccentricity is smallest for most central collisions, where the shape is almost circular. The magnitude of the tilt angle of the emission ellipsoid in the reaction plane decreases with increasing centrality and increasing transverse momentum. All source radii increase with centrality, largely exhibiting a linear rise with the number of participants, irrespective of transverse momentum. A substantial charge-sign difference of the source radii is found, appearing most pronounced at low transverse momentum. The extracted source parameters are consistent with the extrapolation of their energy dependence down from higher energies.
We present a systematic analysis of two-pion interferometry in Au+Au collisions at $sqrt{s_{rm{NN}}}$ = 62.4 GeV and Cu+Cu collisions at $sqrt{s_{rm{NN}}}$ = 62.4 and 200 GeV using the STAR detector at RHIC. The multiplicity and transverse momentum d ependences of the extracted correlation lengths (radii) are studied. The scaling with charged particle multiplicity of the apparent system volume at final interaction is studied for the RHIC energy domain. The multiplicity scaling of the measured correlation radii is found to be independent of colliding system and collision energy.
The Beam Energy Scan (BES) program at the Relativistic Heavy Ion Collider (RHIC) was extended to energies below $sqrt{textit{s}_{NN}}$ = 7.7 GeV in 2015 by successful implementation of the fixed-target mode of operation in the STAR (Solenoidal Track At RHIC) experiment. In the fixed-target mode, ions circulate in one ring of the collider and interact with a stationary target at the entrance of the STAR Time Projection Chamber. The first results for Au+Au collisions at $sqrt{textit{s}_{NN}}$ = 4.5 GeV are presented, including directed and elliptic flow of identified hadrons, and radii from pion femtoscopy. The proton flow and pion femtoscopy results agree quantitatively with earlier measurements by Alternating Gradient Synchrotron experiments at similar energies. This validates running the STAR experiment in the fixed-target configuration. Pion directed and elliptic flow are presented for the first time at this beam energy. Pion and proton elliptic flow show behavior which hints at constituent quark scaling, but large error bars preclude reliable conclusions. The ongoing second phase of BES (BES-II) will provide fixed-target data sets with 100 times more events at each of several energies down to $sqrt{textit{s}_{NN}}$ = 3.0 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا