ترغب بنشر مسار تعليمي؟ اضغط هنا

HST emission-line images of nearby 3CR radio galaxies: two photoionization, accretion and feedback modes

120   0   0.0 ( 0 )
 نشر من قبل Ranieri Diego Baldi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present HST/ACS narrow-band images of a low-z sample of 19 3C radio galaxies to study the H$alpha$ and [OIII] emissions from the narrow-line region (NLR). Based on nuclear emission line ratios, we divide the sample into High and Low Excitation Galaxies (HEGs and LEGs). We observe different line morphologies, extended line emission on kpc scale, large [OIII]/H$alpha$ scatter across the galaxies, and a radio-line alignment. In general, HEGs show more prominent emission line properties than LEGs: larger, more disturbed, more luminous, and more massive regions of ionized gas with slightly larger covering factors. We find evidence of correlations between line luminosities and (radio and X-ray) nuclear luminosities. All these results point to a main common origin, the active nucleus, which ionize the surrounding gas. However, the contribution of additional photoionization mechanism (jet shocks and star formation) are needed to account for the different line properties of the two classes. A relationship between the accretion, photoionization and feedback modes emerges from this study. For LEGs (hot-gas accretors), the synchrotron emission from the jet represents the main source of ionizing photons. The lack of cold gas and star formation in their hosts accounts for the moderate ionized-gas masses and sizes. For HEGs (cold-gas accretors), an ionizing continuum from a standard disk and shocks from the powerful jets are the main sources of photoionization, with the contribution from star formation. These components, combined with the large reservoir of cold/dust gas brought from a recent merger, account for the properties of their extended emission-line regions.



قيم البحث

اقرأ أيضاً

We present HST/WFPC2 Linear Ramp Filter images of high surface brightness emission lines (either [OII], [OIII], or H-alpha+[NII]) in 80 3CR radio sources. We overlay the emission line images on high resolution VLA radio images (eight of which are new reductions of archival data) in order to examine the spatial relationship between the optical and radio emission. We confirm that the radio and optical emission line structures are consistent with weak alignment at low redshift (z < 0.6) except in the Compact Steep Spectrum (CSS) radio galaxies where both the radio source and the emission line nebulae are on galactic scales and strong alignment is seen at all redshifts. There are weak trends for the aligned emission line nebulae to be more luminous, and for the emission line nebula size to increase with redshift and/or radio power. The combination of these results suggests that there is a limited but real capacity for the radio source to influence the properties of the emission line nebulae at these low redshifts (z < 0.6). Our results are consistent with previous suggestions that both mechanical and radiant energy are responsible for generating alignment between the radio source and emission line gas.
We compare the physical and morphological properties of z ~ 2 Lyman-alpha emitting galaxies (LAEs) identified in the HETDEX Pilot Survey and narrow band studies with those of z ~ 2 optical emission line galaxies (oELGs) identified via HST WFC3 infrar ed grism spectroscopy. Both sets of galaxies extend over the same range in stellar mass (7.5 < logM < 10.5), size (0.5 < R < 3.0 kpc), and star-formation rate (~1 < SFR < 100). Remarkably, a comparison of the most commonly used physical and morphological parameters -- stellar mass, half-light radius, UV slope, star formation rate, ellipticity, nearest neighbor distance, star formation surface density, specific star formation rate, [O III] luminosity, and [O III] equivalent width -- reveals no statistically significant differences between the populations. This suggests that the processes and conditions which regulate the escape of Ly-alpha from a z ~ 2 star-forming galaxy do not depend on these quantities. In particular, the lack of dependence on the UV slope suggests that Ly-alpha emission is not being significantly modulated by diffuse dust in the interstellar medium. We develop a simple model of Ly-alpha emission that connects LAEs to all high-redshift star forming galaxies where the escape of Ly-alpha depends on the sightline through the galaxy. Using this model, we find that mean solid angle for Ly-alpha escape is 2.4+/-0.8 steradians; this value is consistent with those calculated from other studies.
113 - P. N. Best 1999
An analysis of the kinematics and ionisation state of the emission line gas of a sample of 14 3CR radio galaxies with redshifts z~1 is carried out. The data used for these studies, deep long--slit spectroscopic exposures from the WHT, are presented i n an accompanying paper. It is found that radio sources with small linear sizes (<150 kpc) have lower ionisation states, higher emission line fluxes and broader line widths than larger radio sources. The emission line ratios of small radio sources are in agreement with theoretical shock ionisation predictions and their velocity profiles are distorted. Together with the other emission line properties this indicates that shocks associated with the radio source dominate the kinematics and ionisation of the emission line gas during the period that the radio source is expanding through the ISM. Gas clouds are accelerated by the shocks, giving rise to the irregular velocity structures observed, whilst shock compression of the clouds and the presence of the ionising photons associated with the shocks combine to lower the ionisation state of the emission line gas. By contrast, in larger sources the shock fronts have passed well beyond the emission line regions; their emission line gas has much more settled kinematical properties, indicative of rotation, and emission line ratios consistent with the dominant source of ionising photons being the active galactic nucleus. (Abridged)
241 - Brian A. Keeney 2017
We present basic data and modeling for a survey of the cool, photo-ionized Circum-Galactic Medium (CGM) of low-redshift galaxies using far-UV QSO absorption line probes. This survey consists of targeted and serendipitous CGM subsamples, originally de scribed in Stocke et al. (2013, Paper 1). The targeted subsample probes low-luminosity, late-type galaxies at $z<0.02$ with small impact parameters ($langlerhorangle = 71$ kpc), and the serendipitous subsample probes higher luminosity galaxies at $zlesssim0.2$ with larger impact parameters ($langlerhorangle = 222$ kpc). HST and FUSE UV spectroscopy of the absorbers and basic data for the associated galaxies, derived from ground-based imaging and spectroscopy, are presented. We find broad agreement with the COS-Halos results, but our sample shows no evidence for changing ionization parameter or hydrogen density with distance from the CGM host galaxy, probably because the COS-Halos survey probes the CGM at smaller impact parameters. We find at least two passive galaxies with H I and metal-line absorption, confirming the intriguing COS-Halos result that galaxies sometimes have cool gas halos despite no on-going star formation. Using a new methodology for fitting H I absorption complexes, we confirm the CGM cool gas mass of Paper 1, but this value is significantly smaller than found by the COS-Halos survey. We trace much of this difference to the specific values of the low-$z$ meta-galactic ionization rate assumed. After accounting for this difference, a best-value for the CGM cool gas mass is found by combining the results of both surveys to obtain $log{(M/M_{odot})}=10.5pm0.3$, or ~30% of the total baryon reservoir of an $L geq L^*$, star-forming galaxy.
Approximately 10-20% of Active Galactic Nuclei are known to eject powerful jets from the innermost regions. There is very little observational evidence if the jets are powered by spinning black holes and if the accretion disks extend to the innermost regions in radio-loud AGN. Here we study the soft X-ray excess, the hard X-ray spectrum and the optical/UV emission from the radio-loud narrow-line Seyfert 1 galaxy PKS 0558-504 using Suzaku and Swift observations. The broadband X-ray continuum of PKS 0558- 504 consists of a soft X-ray excess emission below 2 keV that is well described by a blackbody (kTe ~ 0.13 keV) and high energy emission that is well described by a thermal Comptonisation (compps) model with kTe ~ 250 keV, optical depth {tau} ~ 0.05 (spherical corona) or kTe ~ 90 keV, {tau} ~ 0.5 (slab corona). The Comptonising corona in PKS 0558-504 is likely hotter than in radio-quiet Seyferts such as IC 4329A and Swift J2127.4+5654. The observed soft X-ray excess can be modelled as blurred reflection from an ionised accretion disk or optically thick thermal Comptonisation in a low temperature plasma. Both the soft X-ray excess emission when interpreted as the blurred reflection and the optical/UV to soft X-ray emission interpreted as intrinsic disk Comptonised emission implies spinning (a > 0.6) black hole. These results suggest that disk truncation at large radii and retrograde black hole spin both are unlikely to be the necessary conditions for launching the jets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا