ﻻ يوجد ملخص باللغة العربية
When implemented in the digital domain with time, space and value discretized in the binary form, many good dynamical properties of chaotic systems in continuous domain may be degraded or even diminish. To measure the dynamic complexity of a digital chaotic system, the dynamics can be transformed to the form of a state-mapping network. Then, the parameters of the network are verified by some typical dynamical metrics of the original chaotic system in infinite precision, such as Lyapunov exponent and entropy. This article reviews some representative works on the network-based analysis of digital chaotic dynamics and presents a general framework for such analysis, unveiling some intrinsic relationships between digital chaos and complex networks. As an example for discussion, the dynamics of a state-mapping network of the Logistic map in a fixed-precision computer is analyzed and discussed.
There is by now a large consensus in modern monetary policy. This consensus has been built upon a dynamic general equilibrium model of optimal monetary policy as developed by, e.g., Goodfriend and King (1997), Clarida et al. (1999), Svensson (1999) a
We review our recent work on the synchronization of a network of delay-coupled maps, focusing on the interplay of the network topology and the delay times that take into account the finite velocity of propagation of interactions. We assume that the e
We study the chaotic dynamics of graphene structures, considering both a periodic, defect free, graphene sheet and graphene nanoribbons (GNRs) of various widths. By numerically calculating the maximum Lyapunov exponent, we quantify the chaoticity for
We review the construction of the supersymmetric sigma model for unitary maps, using the color- flavor transformation. We then illustrate applications by three case studies in quantum chaos. In two of these cases, general Floquet maps and quantum gra
Many important high-dimensional dynamical systems exhibit complex chaotic behaviour. Their complexity means that their dynamics are necessarily comprehended under strong reducing assumptions. It is therefore important to have a clear picture of these