ترغب بنشر مسار تعليمي؟ اضغط هنا

Benchmarking high fidelity single-shot readout of semiconductor qubits

79   0   0.0 ( 0 )
 نشر من قبل Daniel Keith Mr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Determination of qubit initialisation and measurement fidelity is important for the overall performance of a quantum computer. However, the method by which it is calculated in semiconductor qubits varies between experiments. In this paper we present a full theoretical analysis of electronic single-shot readout and describe critical parameters to achieve high fidelity readout. In particular, we derive a model for energy selective state readout based on a charge detector response and examine how to optimise the fidelity by choosing correct experimental parameters. Although we focus on single electron spin readout, the theory presented can be applied to other electronic readout techniques in semiconductors that use a reservoir.



قيم البحث

اقرأ أيضاً

The speed of quantum gates and measurements is a decisive factor for the overall fidelity of quantum protocols when performed on physical qubits with finite coherence time. Reducing the time required to distinguish qubit states with high fidelity is therefore a critical goal in quantum information science. The state-of-the-art readout of superconducting qubits is based on the dispersive interaction with a readout resonator. Here, we bring this technique to its current limit and demonstrate how the careful design of system parameters leads to fast and high-fidelity measurements without affecting qubit coherence. We achieve this result by increasing the dispersive interaction strength, by choosing an optimal linewidth of the readout resonator, by employing a Purcell filter, and by utilizing phase-sensitive parametric amplification. In our experiment, we measure 98.25% readout fidelity in only 48 ns, when minimizing read-out time, and 99.2% in 88 ns, when maximizing the fidelity, limited predominantly by the qubit lifetime of 7.6 us. The presented scheme is also expected to be suitable for integration into a multiplexed readout architecture.
We use the electronic spin of a single Nitrogen-Vacancy (NV) defect in diamond to observe the real-time evolution of neighboring single nuclear spins under ambient conditions. Using a diamond sample with a natural abundance of $^{13}$C isotopes, we f irst demonstrate high fidelity initialization and single-shot readout of an individual $^{13}$C nuclear spin. By including the intrinsic $^{14}$N nuclear spin of the NV defect in the quantum register, we then report the simultaneous observation of quantum jumps linked to both nuclear spin species, providing an efficient initialization of the two qubits. These results open up new avenues for diamond-based quantum information processing including active feedback in quantum error correction protocols and tests of quantum correlations with solid-state single spins at room temperature.
Building upon the demonstration of coherent control and single-shot readout of the electron and nuclear spins of individual 31-P atoms in silicon, we present here a systematic experimental estimate of quantum gate fidelities using randomized benchmar king of 1-qubit gates in the Clifford group. We apply this analysis to the electron and the ionized 31-P nucleus of a single P donor in isotopically purified 28-Si. We find average gate fidelities of 99.95 % for the electron, and 99.99 % for the nuclear spin. These values are above certain error correction thresholds, and demonstrate the potential of donor-based quantum computing in silicon. By studying the influence of the shape and power of the control pulses, we find evidence that the present limitation to the gate fidelity is mostly related to the external hardware, and not the intrinsic behaviour of the qubit.
117 - A. Myerson , D. Szwer , S. Webster 2008
We demonstrate single-shot qubit readout with fidelity sufficient for fault-tolerant quantum computation, for two types of qubit stored in single trapped calcium ions. For an optical qubit stored in the (4S_1/2, 3D_5/2) levels of 40Ca+ we achieve 99. 991(1)% average readout fidelity in one million trials, using time-resolved photon counting. An adaptive measurement technique allows 99.99% fidelity to be reached in 145us average detection time. For a hyperfine qubit stored in the long-lived 4S_1/2 (F=3, F=4) sub-levels of 43Ca+ we propose and implement a simple and robust optical pumping scheme to transfer the hyperfine qubit to the optical qubit, capable of a theoretical fidelity 99.95% in 10us. Experimentally we achieve 99.77(3)% net readout fidelity, inferring at least 99.87(4)% fidelity for the transfer operation.
The flip-flop qubit, encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon, showcases long coherence times, good controllability, and, in contrast to other donor-spin-based schemes, long-distance coupling. El ectron spin control near the interface, however, is likely to shorten the relaxation time by many orders of magnitude, reducing the overall qubit quality factor. Here, we theoretically study the multilevel system that is formed by the interacting electron and nuclear spins and derive analytical effective two-level Hamiltonians with and without periodic driving. We then propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise and relatively weak magnetic fields without relying on parametrically restrictive sweet spots. This scheme increases considerably both the relaxation time and the qubit quality factor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا